Genetic and Environmental Factors Behind Predisposition to Parkinson's Disease
DOI:
https://doi.org/10.47611/jsrhs.v13i4.7674Keywords:
Parkinsons Disease, Genetic Factors, Environmental Factors, LRRK2 Gene, SNCA Gene, α-synuclein, Environmental toxins, MPTP, Lewy Bodies, Dopaminergic neuronsAbstract
Parkinson’s Disease (PD) currently affects over 8.5 million individuals globally, a number estimated to rise to 12-17 million by 2040. Since the disorder is gradually becoming one of the most severe ailments affecting those aged 50+, the need for therapeutics that not only hinder but cure PD becomes more and more urgent. Consequently, understanding the factors by which PD susceptibility can be increased along with the pathology behind cases of genetic PD in the hopes of finding a correlation has been an area of interest within the scientific community for the past 50 years. Current research topics include the effects of environmental toxins such as MPTP and genetic mutations within genes including the LRRK2 gene and the SNCA gene which produces α-synuclein. This review covers the latest studies on the increased likelihood of PD caused by these factors and the connection they may have to developing effective pharmaceuticals to treat current and future cases of sporadic PD.
Downloads
References or Bibliography
Rao, J. (2007). Neurochemistry of Parkinson's disease. Handbook of Clinical Neurology, 83, 153-204. https://doi.org/10.1016/S0072-9752(07)83007-7
Mamelak, M. (2018). Parkinson’s disease, the dopaminergic neuron and gammahydroxybutyrate. Neurology and therapy, 7(1), 5-11. https://doi.org/10.1007/s40120-018-0091-2
Thomas, B., & Beal, M. F. (2007). Parkinson's disease. Human molecular genetics, 16(R2), R183-R194. https://doi.org/10.1093/hmg/ddm159
What is Parkinson's? (n.d.). Parkinson's Foundation. Retrieved July 10, 2024, from https://www.parkinson.org/understanding-parkinsons/what-is-parkinsons
Hof, P. R., Kidd, G., DeFelipe, J., de Vellis, J., Sosa, M. A. G., Elder, G. A., & Trapp, B. D. (2014). Chapter 1-Cellular components of nervous tissue. Fundamental Neuroscience, 41-59. https://doi.org/10.1016/B978-0-12-397179-1.00001-4
Schapira, A. H. (1999). Parkinson's disease. Bmj, 318(7179), 311-314. https://doi.org/10.1136/bmj.318.7179.311
The Genetic Link to Parkinson's Disease. (n.d.). Johns Hopkins Medicine. Retrieved July 10, 2024, from https://www.hopkinsmedicine.org/health/conditions-and-diseases/parkinsons-disease/the-genetic-link-to-parkinsons-disease
Brown, T. P., Rumsby, P. C., Capleton, A. C., Rushton, L., & Levy, L. S. (2006). Pesticides and Parkinson’s disease—is there a link?. Environmental health perspectives, 114(2), 156-164. https://doi.org/10.1289/ehp.8095
Gokuladhas, S., Fadason, T., Farrow, S. et al. Discovering genetic mechanisms underlying the co-occurrence of Parkinson’s disease and non-motor traits. npj Parkinsons Dis. 10, 27 (2024). https://doi.org/10.1038/s41531-024-00638-w
Parkinson's disease - Symptoms and causes. (2024, April 5). Mayo Clinic. Retrieved July 10, 2024, from https://www.mayoclinic.org/diseases-conditions/parkinsons-disease/symptoms-causes/syc-20376055
Tanner, C. M., & Goldman, S. M. (1996). Epidemiology of Parkinson's disease. Neurologic clinics, 14(2), 317-335. https://doi.org/10.1016/S0733-8619(05)70259-0
Langston, J. W. (2017). The MPTP story. Journal of Parkinson's disease, 7(s1), S11-S19. https://doi.or/10.3233/JPD-179006
Sian J, Youdim MBH, Riederer P, et al. MPTP-Induced Parkinsonian Syndrome. In: Siegel GJ, Agranoff BW, Albers RW, et al., editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. Philadelphia: Lippincott-Raven; 1999. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27974/
Flanagan, M., Sonnen, J. A., Keene, C. D., Hevner, R. F., & Montine, T. J. (2018). Molecular basis of diseases of the nervous system. In Molecular Pathology (pp. 651-690). Academic Press. https://doi.org/10.1016/B978-0-12-813257-9.00029-2
Zawada, W. M., Banninger, G. P., Thornton, J., Marriott, B., Cantu, D., Rachubinski, A. L., ... & Jones, S. M. (2011). Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. Journal of neuroinflammation, 8, 1-13. https://doi.org/10.1186/1742-2094-8-129
Faouzi, M., & Penner, R. (2014). Trpm2. Mammalian Transient Receptor Potential (TRP) Cation Channels: Volume I, 403-426. https://doi.org/10.1007/978-3-642-54215-2_16
Choi, S. J., Panhelainen, A., Schmitz, Y., Larsen, K. E., Kanter, E., Wu, M., ... & Mosharov, E. V. (2015). Changes in neuronal dopamine homeostasis following 1-methyl-4-phenylpyridinium (MPP+) exposure. Journal of Biological Chemistry, 290(11), 6799-6809. https://doi.org/10.1074/jbc.M114.631556
Porras, G., Li, Q., & Bezard, E. (2012). Modeling Parkinson’s disease in primates: the MPTP model. Cold Spring Harbor perspectives in medicine, 2(3), a009308. https://doi.org/10.1101/cshperspect.a009308
Meredith, G. E., & Rademacher, D. J. (2011). MPTP mouse models of Parkinson's disease: an update. Journal of Parkinson's disease, 1(1), 19-33. https://doi.org/10.3233/JPD-2011-11023
Tanner, C. M., Ottman, R., Goldman, S. M., Ellenberg, J., Chan, P., Mayeux, R., & Langston, J. W. (1999). Parkinson disease in twins: an etiologic study. Jama, 281(4), 341-346. https://doi.org/10.1001/jama.281.4.341
Johnson, W. G., Hodge, S. E., & Duvoisin, R. (1990). Twin studies and the genetics of Parkinson's disease—a reappraisal. Movement disorders: official journal of the Movement Disorder Society, 5(3), 187-194. https://doi.org/10.1002/mds.870050302
Ferese, R., Modugno, N., Campopiano, R., Santilli, M., Zampatti, S., Giardina, E., ... & Gambardella, S. (2015). Four copies of SNCA responsible for autosomal dominant Parkinson’s disease in two Italian siblings. Parkinson’s disease, 2015(1), 546462. https://doi.org/10.1155/2015/546462
Golbe, L. I., Lazzarini, A. M., Duvoisin, R. C., Iorio, G. D., Sanges, G., Bonavita, V., & la Sala, S. (1996). Clinical genetic analysis of Parkinson's disease in the Contursi kindred. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 40(5), 767-775. https://doi.org/10.1002/ana.410400513
Bonifati, V. (2012). Autosomal recessive parkinsonism. Parkinsonism & related disorders, 18, S4-S6. https://doi.org/10.1016/S1353-8020(11)70004-9
Cooper, A. A., Gitler, A. D., Cashikar, A., Haynes, C. M., Hill, K. J., Bhullar, B., ... & Lindquist, S. (2006). α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science, 313(5785), 324-328. https://doi.org/10.1126/science.1129462
Liu, G., Aliaga, L., & Cai, H. (2012). α-Synuclein, Lrrk2 and Their Interplay In Parkinson‘s Disease. Future neurology, 7(2), 145-153. https://doi.org/10.2217/fnl.12.2
Li, JQ., Tan, L. & Yu, JT. The role of the LRRK2 gene in Parkinsonism. Mol Neurodegeneration 9, 47 (2014). https://doi.org/10.1186/1750-1326-9-47
Williamson, M. G., Madureira, M., McGuinness, W., Heon-Roberts, R., Mock, E. D., Naidoo, K., ... & Wade-Martins, R. (2023). Mitochondrial dysfunction and mitophagy defects in LRRK2-R1441C Parkinson’s disease models. Human Molecular Genetics, 32(18), 2808-2821. https://doi.org/10.1093/hmg/ddad102
Chase, B. A., & Markopoulou, K. (2010). PARK8, LRRK2 (Dardarin). In Encyclopedia of Movement Disorders (pp. 395-399). Elsevier Inc.. https://doi.org/10.1016/B978-0-12-374105-9.00503-7
Rocha, E. M., Keeney, M. T., Di Maio, R., De Miranda, B. R., & Greenamyre, J. T. (2022). LRRK2 and idiopathic Parkinson’s disease. Trends in neurosciences, 45(3), 224-236. https://doi.org/10.1016/j.tins.2021.12.002
Seegobin, S. P., Heaton, G. R., Liang, D., Choi, I., Blanca Ramirez, M., Tang, B., & Yue, Z. (2020). Progress in LRRK2-associated Parkinson’s disease animal models. Frontiers in Neuroscience, 14, 674. https://doi.org/10.3389/fnins.2020.00674
Rui, Q., Ni, H., Li, D., Gao, R., & Chen, G. (2018). The role of LRRK2 in neurodegeneration of Parkinson disease. Current neuropharmacology, 16(9), 1348-1357. https://doi.org/10.2174/1570159X16666180222165418
Chen, C. Y., Weng, Y. H., Chien, K. Y., Lin, K. J., Yeh, T. H., Cheng, Y. P., ... & Wang, H. L. (2012). (G2019S) LRRK2 activates MKK4-JNK pathway and causes degeneration of SN dopaminergic neurons in a transgenic mouse model of PD. Cell Death & Differentiation, 19(10), 1623-1633. https://doi.org/10.1038/cdd.2012.42
Cording, A. C., Shiaelis, N., Petridi, S., Middleton, C. A., Wilson, L. G., & Elliott, C. J. (2017). Targeted kinase inhibition relieves slowness and tremor in a Drosophila model of LRRK2 Parkinson’s disease. npj Parkinson's Disease, 3(1), 34. https://doi.org/10.1038/s41531-017-0036-y
Vitte, J., Traver, S., Maués De Paula, A., Lesage, S., Rovelli, G., Corti, O., ... & Brice, A. (2010). Leucine-rich repeat kinase 2 is associated with the endoplasmic reticulum in dopaminergic neurons and accumulates in the core of Lewy bodies in Parkinson disease. Journal of Neuropathology & Experimental Neurology, 69(9), 959-972. https://doi.org/10.1097/NEN.0b013e3181efc01c
Siddiqui, I. J., Pervaiz, N., & Abbasi, A. A. (2016). The Parkinson Disease gene SNCA: Evolutionary and structural insights with pathological implication. Scientific reports, 6(1), 24475. https://doi.org/10.1038/srep24475
Genetics Behind Parkinson's. (n.d.). Parkinson's Foundation. Retrieved July 10, 2024, from https://www.parkinson.org/advancing-research/our-research/pdgeneration/genetics-behind-pd
Dikiy, I., & Eliezer, D. (2012). Folding and misfolding of alpha-synuclein on membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1818(4), 1013-1018. https://doi.org/10.1016/j.bbamem.2011.09.008
Maries, E., Dass, B., Collier, T. et al. The role of α-synuclein in Parkinson's disease: insights from animal models. Nat Rev Neurosci 4, 727–738 (2003). https://doi.org/10.1038/nrn1199
Srinivasan, E., Chandrasekhar, G., Chandrasekar, P., Anbarasu, K., Vickram, A. S., Karunakaran, R., ... & Srikumar, P. S. (2021). Alpha-synuclein aggregation in Parkinson's disease. Frontiers in medicine, 8, 736978. https://doi.org/10.3389/fmed.2021.736978
Luk, K. C., Kehm, V., Carroll, J., Zhang, B., O’Brien, P., Trojanowski, J. Q., & Lee, V. M. Y. (2012). Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science, 338(6109), 949-953. https://doi.or/10.1126/science.1227157
Masuda-Suzukake, M., Nonaka, T., Hosokawa, M., Oikawa, T., Arai, T., Akiyama, H., ... & Hasegawa, M. (2013). Prion-like spreading of pathological α-synuclein in brain. Brain, 136(4), 1128-1138. https://doi.org/10.1093/brain/awt037
Paumier, K. L., Luk, K. C., Manfredsson, F. P., Kanaan, N. M., Lipton, J. W., Collier, T. J., ... & Sortwell, C. E. (2015). Intrastriatal injection of pre-formed mouse α-synuclein fibrils into rats triggers α-synuclein pathology and bilateral nigrostriatal degeneration. Neurobiology of disease, 82, 185-199. https://doi.org/10.1016/j.nbd.2015.06.003
Shimozawa, A., Ono, M., Takahara, D., Tarutani, A., Imura, S., Masuda-Suzukake, M., ... & Hasegawa, M. (2017). Propagation of pathological α-synuclein in marmoset brain. Acta neuropathologica communications, 5, 1-14. https://doi.org/10.1186/s40478-017-0413-0
Gómez-Benito, M., Granado, N., García-Sanz, P., Michel, A., Dumoulin, M., & Moratalla, R. (2020). Modeling Parkinson’s disease with the alpha-synuclein protein. Frontiers in pharmacology, 11, 356. https://doi.org/10.3389/fphar.2020.00356
Koprich, J. B., Johnston, T. H., Reyes, M. G., Sun, X., & Brotchie, J. M. (2010). Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson's disease. Molecular neurodegeneration, 5, 1-12. https://doi.org/10.1186/1750-1326-5-43
Oliveras-Salvá, M., Van der Perren, A., Casadei, N., Stroobants, S., Nuber, S., D’Hooge, R., ... & Baekelandt, V. (2013). rAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration. Molecular neurodegeneration, 8, 1-14. https://doi.org/10.1186/1750-1326-8-44
Stefanis, L. (2012). α-Synuclein in Parkinson's disease. Cold Spring Harbor perspectives in medicine, 2(2), a009399. https://doi.org/10.1101/cshperspect.a009399
Parkinson's disease - Diagnosis and treatment. (2024, April 5). Mayo Clinic. Retrieved July 10, 2024, from https://www.mayoclinic.org/diseases-conditions/parkinsons-disease/diagnosis-treatment/drc-20376062
Definition of levodopa - NCI Drug Dictionary - NCI. (n.d.). National Cancer Institute. Retrieved July 10, 2024, from https://www.cancer.gov/publications/dictionaries/cancer-drug/def/levodopa
Salat, D., & Tolosa, E. (2013). Levodopa in the treatment of Parkinson's disease: current status and new developments. Journal of Parkinson's disease, 3(3), 255-269. https://doi.org/10.3233/JPD-130186
Schapira, A. H. V. (2005). Present and future drug treatment for Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 76(11), 1472-1478. https://doi.org/10.1136/jnnp.2004.035980
Elsworth, J. D. (2020). Parkinson’s disease treatment: Past, present, and future. Journal of neural transmission, 127(5), 785-791. https://doi.org/10.1007/s00702-020-02167-1
Tan, Y. Y., Jenner, P., & Chen, S. D. (2022). Monoamine oxidase-B inhibitors for the treatment of Parkinson’s disease: past, present, and future. Journal of Parkinson's Disease, 12(2), 477-493. https://doi.org/10.3233/JPD-212976
Published
How to Cite
Issue
Section
Copyright (c) 2024 Janithasri Ganesh, Vandana Peddapalli; Jordan Boyd

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


