Using Machine Learning to Improve Antimalarial Drug Delivery With Nanoparticles
DOI:
https://doi.org/10.47611/jsrhs.v13i3.7487Keywords:
Nanoparticles, Machine Learning, Primaquine, Malaria, Drug ResistanceAbstract
Malaria, caused by the Plasmodium parasite transmitted through Anopheles mosquito bites, poses a significant global health challenge. The emergence of drug resistance in antimalarial treatments exacerbates this problem, particularly in endemic regions like the WHO African Region. Despite there being several antimalarial drugs, malaria cases persist, necessitating innovative solutions. This paper explores the potential of nanotechnology and machine learning to address drug resistance in malaria treatment. Drawing on a diverse range of literature, this research investigates optimal pairings of antimalarial drugs with nanoparticles to enhance drug delivery efficiency. Leveraging machine learning algorithms, predictive models are developed to forecast the effectiveness of nanoparticle-drug combinations. A Python-based machine learning program utilizing datasets from the University of Coruna and the ChEMBL database is employed to predict antimalarial activity in drug-nanoparticle pairings. The study reveals promising results, indicating the potential of nanoformulated primaquine as effective antimalarial agents. The logistic regression model created from the results of the machine learning model demonstrates room for improvement, particularly in addressing class imbalances and incorporating feature engineering techniques. However, as seen in past research, machine learning proves to be beneficial in drug discovery and can thereby assist in finding a solution to the drug resistance problem in antimalarial drugs. Enhanced machine learning models, coupled with experimental validation, has the possibility to hold promise in accelerating the discovery of potent antimalarial treatments in future studies, thereby mitigating the global burden of malaria and advancing towards sustainable malaria control strategies.
Downloads
References or Bibliography
Alshawwa, S. Z., Kassem, A. A., Farid, R. M., Mostafa, S. K., & Labib, G. S. (2022). Nanocarrier drug delivery systems: Characterization, Limitations, future perspectives and implementation of Artificial Intelligence. Pharmaceutics, 14(4), 883. https://doi.org/10.3390/pharmaceutics14040883
Baruah, U. K., Gowthamarajan, K., Ravisankar, V., Karri, V. V., Simhadri, P. K., Singh, V., & Babu, P. P. (2017). Design, characterization and antimalarial efficacy of pegylated galactosylated nano lipid carriers of primaquine phosphate. Artificial Cells, Nanomedicine, and Biotechnology, 1–21. https://doi.org/10.1080/21691401.2017.1394870
Chao, J. (2023, July 26). Seeing malaria in a new light. CZ Biohub. https://www.czbiohub.org/life-science/seeing-malaria-in-a-new-light/Kong, B., Seog, J. H., Graham, L. M., & Lee, S. B. (2011). Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine, 6(5), 929–941. https://doi.org/10.2217/nnm.11.77
Din, F. ud, Aman, W., Ullah, I., Qureshi, O. S., Mustapha, O., Shafique, S., & Zeb, A. (2017). Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International Journal of Nanomedicine, Volume 12, 7291–7309. https://doi.org/10.2147/ijn.s146315
Isacchi, B., Bergonzi, M. C., Grazioso, M., Righeschi, C., Pietretti, A., Severini, C., & Bilia, A. R. (2012). Artemisinin and artemisinin plus curcumin liposomal formulations: Enhanced antimalarial efficacy against Plasmodium berghei-infected mice. European Journal of Pharmaceutics and Biopharmaceutics, 80(3), 528–534. https://doi.org/10.1016/j.ejpb.2011.11.015
Kong, B., Seog, J. H., Graham, L. M., & Lee, S. B. (2011). Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine, 6(5), 929–941. https://doi.org/10.2217/nnm.11.77
Kyriakides, T. R., Raj, A., Tseng, T. H., Xiao, H., Nguyen, R., Mohammed, F. S., … Sheu, W. C. (2021). Biocompatibility of nanomaterials and their immunological properties. Biomedical Materials, 16(4), 042005. doi:10.1088/1748-605x/abe5fa
Murthy, S. K. (2007). Nanoparticles in modern medicine: State of the art and future challenges. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673971/
Naahidi, S., Jafari, M., Edalat, F., Raymond, K., Khademhosseini, A., & Chen, P. (2013). Biocompatibility of engineered nanoparticles for Drug Delivery. Journal of Controlled Release, 166(2), 182–194. doi:10.1016/j.jconrel.2012.12.013
Oladipo, A. O., Lebelo, S. L., & Msagati, T. A. M. (2023). Nanocarrier design–function relationship: The prodigious role of properties in regulating biocompatibility for drug delivery applications. Chemico-Biological Interactions, 377, 110466. doi:10.1016/j.cbi.2023.110466
Patel, V., & Shah, M. (2022). Artificial Intelligence and machine learning in drug discovery and development. Intelligent Medicine, 2(3), 134–140. https://doi.org/10.1016/j.imed.2021.10.001
Pestehchian, N., Vafaei, M. R., Nematolahy, P., Varshosaz, J., Yousefi, H. A., Bide, V. Z., & Kalani, H. (2020). A new effective antiplasmodial compound: Nanoformulated pyrimethamine. Journal of Global Antimicrobial Resistance, 20, 309–315. https://doi.org/10.1016/j.jgar.2019.08.002
Raschka, S., & Kaufman, B. (2020). Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition. Methods, 180, 89–110. https://doi.org/10.1016/j.ymeth.2020.06.016
Sanità, G., Carrese, B., & Lamberti, A. (2020). Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Frontiers in Molecular Biosciences, 7. https://doi.org/10.3389/fmolb.2020.587012
Shahane, S. (2021, February 6). Antimalarial activity prediction. Kaggle. https://www.kaggle.com/datasets/saurabhshahane/antimalaria-activity-prediction?resource=download
Takala‐Harrison, S., & Laufer, M. K. (2015). Antimalarial drug resistance in Africa: Key lessons for the future. Annals of the New York Academy of Sciences, 1342(1), 62–67. https://doi.org/10.1111/nyas.12766
Tripathy, S., Das, S., Dash, S. K., Mahapatra, S. K., Chattopadhyay, S., Majumdar, S., & Roy, S. (2014). A prospective strategy to restore the tissue damage in malaria infection: Approach with Chitosan-trypolyphosphate conjugated nanochloroquine in Swiss mice. European Journal of Pharmacology, 737, 11–21. https://doi.org/10.1016/j.ejphar.2014.04.030
Tripathy, S., Mahapatra, S. K., Chattopadhyay, S., Das, S., Dash, S. K., Majumder, S., Pramanik, P., & Roy, S. (2013). A novel chitosan based antimalarial drug delivery against Plasmodium berghei infection. Acta Tropica, 128(3), 494–503. https://doi.org/10.1016/j.actatropica.2013.07.011
Tuteja, R. (2007). Malaria − an overview. The FEBS Journal, 274(18), 4670–4679. https://doi.org/10.1111/j.1742-4658.2007.05997.x
Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., & Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5
WHO. (2023a, October). Malaria vaccine implementation programme. World Health Organization. https://www.who.int/initiatives/malaria-vaccine-implementation-programme#:~:text=This%20applies%20to%20both%20RTS,Programme%2C%20MVIP%2C%20since%202019
WHO. (2023b, December). Fact sheet about malaria. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/malaria#:~:text=The%20WHO%20African%20Region%20continues,malaria%20deaths%20in%20the%20Region
Winny, A. (2023, September 5). Malaria’s comeback in the U.S. Johns Hopkins Bloomberg School of Public Health. https://publichealth.jhu.edu/2023/malarias-comeback-in-the-us
Published
How to Cite
Issue
Section
Copyright (c) 2024 Shriya Machanpalli; Jothsna Kethar, Dr.Kristina Lilova, Virgel Torremoch

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


