The Relationship Between Lipids and Lipoproteins in Spinal Cord Injury: A review

Authors

  • Daniel Lee Paul Laurence Dunbar High School

DOI:

https://doi.org/10.47611/jsrhs.v13i3.7480

Keywords:

spinal cord injury, lipid, lipoprotein

Abstract

Spinal cord injury (SCI) results in disrupted neuronal communication between the brain and the peripheral organs due to impairment of neuronal function below the site of injury. SCI triggers a cascade of molecular events, including an imbalance in lipid metabolism, which can exacerbate tissue damage and impede neurological recovery. Lipids are crucial for cellular and tissue maintenance in the central nervous system (CNS). They are physical and structural elements of cell membranes, offering fluidity and integrity, and myelin sheaths, allowing for more rapid propagation of electrical signals and enabling the nervous system to function properly. Lipids also function as signaling and energy storage molecules essential for proper CNS function and health. Lipid dysregulation in CNS following spinal cord injury (SCI) is a critical area of study due to its significant impact on cellular environments and subsequent recovery processes. Research indicates that targeting lipid dysregulation could offer a promising avenue for mitigating the secondary damage resulting from SCI and improving overall recovery. Understanding the intricate link between SCI and lipids is important to the development of targeted therapies that modulate lipid metabolism for improved outcomes. This article reviews the current understanding of the relationship between SCI, lipids, and lipoproteins and the potential to target lipids in future SCI treatment mechanisms.

Downloads

Download data is not yet available.

References or Bibliography

Ahmed S, Shah P, & Ahmed, O. (2023). Biochemistry, lipids. [Updated 2023 May 1]. In StatPearls [Internet]. StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK525952/

Ahuja, C. S., & Fehlings, M. (2016). Concise review: Bridging the gap: Novel neuroregenerative and neuroprotective strategies in spinal cord injury. Stem Cells Translational Medicine, 5(7), 914–924. https://doi.org/10.5966/sctm.2015-0381

Ahuja, C. S., Nori, S., Tetreault, L., Wilson, J., Kwon, B., Harrop, J., Choi, D., & Fehlings, M. G. (2017). Traumatic spinal cord injury-repair and regeneration. Neurosurgery, 80(3S), S9–S22. https://doi.org/10.1093/neuros/nyw080

Al-Hussaniy, H. A., Alburghaif, A. H., & Naji, M. A. (2021). Leptin hormone and its effectiveness in reproduction, metabolism, immunity, diabetes, hopes and ambitions. Journal of Medicine and Life, 14(5), 600–605. https://doi.org/10.25122/jml-2021-0153

Alizadeh, A., Dyck, S. M., & Karimi-Abdolrezaee, S. (2019). Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Frontiers in Neurology, 10, 282. https://doi.org/10.3389/fneur.2019.00282

Bailey, A., & Mohiuddin, S.S. (2022). Biochemistry, high density lipoprotein. [Updated 2022 Sep 26]. In StatPearls [Internet]. StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK549802

Bertolio, R., Napoletano, F., Mano, M., Maurer-Stroh, S., Fantuz, M., Zannini, A., Bicciato, S., Sorrentino, G., & Del Sal, G. (2019). Sterol regulatory element binding protein 1 couples mechanical cues and lipid metabolism. Nature Communications, 10, 1326. https://doi.org/10.1038/s41467-019-09152-7

Björkegren, J. L. M., & Lusis, A. J. (2022). Atherosclerosis: Recent developments. Cell, 185(10), 1630–1645. https://doi.org/10.1016/j.cell.2022.04.004

Cantuti-Castelvetri, L., Fitzner, D., Bosch-Queralt, M., Weil, M. T., Su, M., Sen, P., Ruhwedel, T., Mitkovski, M., Trendelenburg, G., Lütjohann, D., Möbius, W., & Simons, M. (2018). Defective cholesterol clearance limits remyelination in the aged central nervous system. Science, 359(6376), 684–688. https://doi.org/10.1126/science.aan4183

Cermenati, G., Mitro, N., Audano, M., Melcangi, R. C., Crestani, M., De Fabiani, E., & Caruso, D. (2015). Lipids in the nervous system: from biochemistry and molecular biology to patho-physiology. Biochimica et Biophysica Acta, 1851(1), 51–60. https://doi.org/10.1016/j.bbalip.2014.08.011

Cooper, G.M. (2000). The cell: A molecular approach. 2nd edition. Sunderland (MA): Sinauer Associates. The Mechanism of Vesicular Transport. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9886/

Craig, M., Yarrarapu, SNS., & Dimri, M. (2023). Biochemistry, cholesterol. [Updated 2023 Aug 8]. In StatPearls [Internet]. StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513326

Desimone, A., Hong, J., Brockie, S. T., Yu, W., Laliberte, A., M., & Fehlings, M. G. (2021). The influence of ApoE4 on the clinical outcomes and pathophysiology of degenerative cervical myelopathy. JCI Insight, 6(15): e149227. https://doi.org/10.1172/jci.insight.149227

Dowhan, W. & Bogdanov, M. (2002). Chapter 1 Functional roles of lipids in membranes. New Comprehensive Biochemistry, 36, 1-35. https://doi.org/10.1016/S0167-7306(02)36003-4

Febbraio, M., Podrez, E. A., Smith, J. D., Hajjar, D. P., Hazen, S. L., Hoff, H. F., Sharma, K., & Silverstein, R. L. (2000). Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. The Journal of clinical investigation, 105(8), 1049–1056. https://doi.org/10.1172/JCI9259

Feingold, K.R. (2024). Introduction to lipids and lipoproteins. [Updated 2024 Jan 14]. In K.R. Feingold, B. Anawalt, M.R. Blackman, et al., (Eds). Endotext [Internet]. MDText.com, Inc. Available from: https://www.ncbi.nlm.nih.gov/books/NBK305896/

Gilbert, O., Croffoot, J. R., Taylor, A. J., Nash, M., Schomer, K., & Groah, S. (2014). Serum lipid concentrations among persons with spinal cord injury - a systematic review and meta-analysis of the literature. Atherosclerosis, 232(2), 305–312. https://doi.org/10.1016/j.atherosclerosis.2013.11.028

Gorgey, A. S., Mather, K. J., & Gater, D. R. (2011). Central adiposity associations to carbohydrate and lipid metabolism in individuals with complete motor spinal cord injury. Metabolism: Clinical and Experimental, 60(6), 843–851. https://doi.org/10.1016/j.metabol.2010.08.002

de Groot, S., Dallmeijer, A. J., Post, M. W., Angenot, E. L., & van der Woude, L. H. (2008). The longitudinal relationship between lipid profile and physical capacity in persons with a recent spinal cord injury. Spinal Cord, 46(5), 344–351. https://doi.org/10.1038/sj.sc.3102147

Hellenbrand, D. J., Quinn, C. M., Piper, Z. J., Morehouse, C. N., Fixel, J. A., & Hanna, A. S. (2021). Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. Journal of Neuroinflammation, 18(1), 284. https://doi.org/10.1186/s12974-021-02337-2

Hu, X., Xu, W., Ren, Y., Wang, Z., He, X., Huang, R., Bei, M., Zhao, J., Zhu, R., & Cheng, L. (2023). Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 8, 245. https://doi.org/10.1038/s41392-023-01477-6

Huang, Y., & Mahley, R. W. (2014). Apolipoprotein E: Structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases. Neurobiology of Disease, 72 Pt A, 3–12. https://doi.org/10.1016/j.nbd.2014.08.025

Juarez Casso, F.M. & Farzam, K. (2022). Biochemistry, very low density lipoprotein. [Updated 2022 Dec 4]. In StatPearls [Internet]. StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK587400

Koutsodendris, N., Blumenfeld, J., Agrawal, A., Traglia, M., Grone, B., Zilberter, M., Yip, O., Rao, A., Nelson, M. R., Hao, Y., Thomas, R., Yoon, S. Y., Arriola, P., & Huang, Y. (2023). Neuronal APOE4 removal protects against tau-mediated gliosis, neurodegeneration and myelin deficits. Nature Aging, 3(3), 275–296. https://doi.org/10.1038/s43587-023-00368-3

Kwiecien, J. M., Dabrowski, W., Dąbrowska-Bouta, B., Sulkowski, G., Oakden, W., Kwiecien-Delaney,C. J., Yaron, J. R., Zhang, L., Schutz, L., Marzec-Kotarska, L. B., Stanisz, G. J., Karis, J. P., Struzynska, L., & Lucas, A. R. (March 2020). Prolonged inflammation leads to ongoing damage after spinal cord injury. PLOS ONE, 15(3), e0226584 - March 2020. https://doi.org/10.1371/journal.pone.0226584

Lima, R., Monteiro, A., Salgado, A. J., Monteiro, S., & Silva, N. A. (2022). Pathophysiology and therapeutic approaches for spinal cord injury. International Journal of Molecular Sciences, 23(22), 13833. https://doi.org/10.3390/ijms232213833

Mar, F. M., da Silva, T. F., Morgado, M. M., Rodrigues, L. G., Rodrigues, D., Pereira, M. I. L., Marques, A., Sousa, V. F., Coentro, J., Sá-Miranda, C., Sousa, M. M., & Brites, P. (2016). Myelin lipids inhibit axon regeneration following spinal cord injury: A novel perspective for therapy. Molecular Neurobiology, 53(2), 1052–1064. https://doi.org/10.1007/s12035-014-9072-3

Mahley, R. W., Weisgraber, K. H, & Huang, Y. (2006). Apolipoprotein E4: A causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proceedings of the National Academy of Sciences, 103(15) 5644-5651. https://doi.org/10.1073/pnas.060054910

Mayo Foundation for Medical Education and Research (MFMER). (2023). Spinal cord injury. Retrieved from https://www.mayoclinic.org/diseases-conditions/spinal-cord-injury/symptoms-causes/syc-20377890

National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health. (2021). Spinal cord injury: Hope through research, NINDS, Publication date July 2013. NIH Publication 13-NS-160. Retrieved from https://catalog.ninds.nih.gov/sites/default/files/publications/spinal-cord-injury-hope-through-research_0.pdf

Rankin, K. C., O'Brien, L. C., Segal, L., Khan, M. R., & Gorgey, A. S. (2017). Liver adiposity and metabolic profile in individuals with chronic spinal cord injury. BioMed Research International, 2017, 1364818. https://doi.org/10.1155/2017/1364818

Patel, M. B., Oza, N. A., Anand, I. S., Deshpande, S. S., & Patel, C. N. (2008). Liver x receptor: a novel therapeutic target. Indian Journal of Pharmaceutical Sciences, 70(2), 135–144. https://doi.org/10.4103/0250-474X.41445

Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry: IJCB, 30(1), 11–26. https://doi.org/10.1007/s12291-014-0446-0

Phillips M. C. (2014). Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB life, 66(9), 616–623. https://doi.org/10.1002/iub.1314

Roselló-Busquets, C., de la Oliva, N., Martínez-Mármol, R., Hernaiz-Llorens, M., Pascual, M., Muhaisen, A., Navarro, X., Del Valle, J., & Soriano, E. (2019). Cholesterol depletion regulates axonal growth and enhances central and peripheral nerve regeneration. Frontiers in Cellular Neuroscience, 13, 40. https://doi.org/10.3389/fncel.2019.00040

Roy, D., & Tedeschi, A. (2021). The role of lipids, lipid metabolism and ectopic lipid accumulation in axon growth, regeneration and repair after CNS injury and disease. Cells, 10(5), 1078. https://doi.org/10.3390/cells10051078

Ryan, C. B., Choi, J. S., Al-Ali, H., & Lee, J. K. (2022). Myelin and non-myelin debris contribute to foamy macrophage formation after spinal cord injury. Neurobiology of Disease, 163, 105608. https://doi.org/10.1016/j.nbd.2021.105608

Rukmangadachar, L. A. & Bollu, P. C. (2023). Amyloid beta peptide. [Updated 2023 Aug 28]. In StatPearls [Internet]. StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459119

Strattan, L. E., Britsch, D. R. S., Calulot, C. M., Maggard, R. S. J., Abner, E. L., Johnson, L. A., & Alilain, W. J. (2021). Novel influences of sex and APOE Genotype on spinal plasticity and recovery of function after spinal cord injury. eNeuro, 8(2), ENEURO.0464-20.2021. https://doi.org/10.1523/ENEURO.0464-20.2021

Sterner, R. C., & Sterner, R. M. (2023). Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Frontiers in Immunology, 13, 1084101. https://doi.org/10.3389/fimmu.2022.1084101

Suzuki, A., & Diehl, A. M. (2017). Nonalcoholic steatohepatitis. Annual Review of Medicine, 68, 85–98. https://doi.org/10.1146/annurev-med-051215-031109

Susuki, K. (2010) Myelin: A specialized membrane for cell communication. Nature Education, 3(9), 59. Available at https://www.nature.com/scitable/topicpage/myelin-a-specialized-membrane-for-cell-communication-14367205/

Toro, C. A., Hansen, J., Siddiq, M. M., Johnson, K., Zhao, W., Azulai, D., Das, D. K., Bauman, W., Sebra, R., Cai, D., Iyengar, R., & Cardozo, C. P. (2021). The human ApoE4 variant reduces functional recovery and neuronal sprouting after incomplete spinal cord injury in male mice. Frontiers in Cellular Neuroscience, 15, 626192. https://doi.org/10.3389/fncel.2021.626192

Triplet, E. M., & Scarisbrick, I. A. (2021). Statin use is associated with reduced motor recovery after spinal cord injury. Spinal Cord Series and Cases, 7(1), 8. https://doi.org/10.1038/s41394-020-00378-y

Urano, Y., Ochiai, S., & Noguchi, N. (2013). Suppression of amyloid-β production by 24S-hydroxycholesterol via inhibition of intracellular amyloid precursor protein trafficking. FASEB Journal: official publication of the Federation of American Societies for Experimental Biology, 27(10), 4305–4315. https://doi.org/10.1096/fj.13-231456

Wang, C., Xiong, M., Gratuze, M., Bao, X., Shi, Y., Andhey, P. S., Manis, M., Schroeder, C., Yin, Z., Madore, C., Butovsky, O., Artyomov, M., Ulrich, J. D., & Holtzman, D. M. (2021). Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron, 109(10), 1657–1674.e7. https://doi.org/10.1016/j.neuron.2021.03.024

Yang, X., Chen, S., Shao, Z., Li, Y., Wu, H., Li, X., Mao, L., Zhou, Z., Bai, L., Mei, X., & Liu, C. (2018). Apolipoprotein E deficiency exacerbates spinal cord injury in mice: Inflammatory response and oxidative stress mediated by NF-κB signaling pathway. Frontiers in Cellular Neuroscience, 12, 142. https://doi.org/10.3389/fncel.2018.00142

Yang, L. G., March, Z. M., Stephenson, R.A., Narayan, P.S. (2023). Apolipoprotein E in lipid metabolism and neurodegenerative disease. Trends in Endocrinology & Metabolism, 34(8). 430 - 445. https://doi.org/10.1016/j.tem.2023.05.002

Yang, C., Wang, X., Wang, J., Wang, X., Chen, W., Lu, N., Siniossoglou, S., Yao, Z., & Liu, K. (2020). Rewiring neuronal glycerolipid metabolism determines the extent of axon regeneration. Neuron, 105(2), 276–292.e5. https://doi.org/10.1016/j.neuron.2019.10.009

Yekutiel, M., Brooks, M. E., Ohry, A., Yarom, J., & Carel, R. (1989). The prevalence of hypertension, ischaemic heart disease and diabetes in traumatic spinal cord injured patients and amputees. Paraplegia, 27(1), 58–62. https://doi.org/10.1038/sc.1989.9

World Health Organization. (2013). Spinal cord injury. Retrieved from https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury

Zhu, Y., Lyapichev, K., Lee, D. H., Motti, D., Ferraro, N. M., Zhang, Y., Yahn, S., Soderblom, C., Zha, J., Bethea, J. R., Spiller, K. L., Lemmon, V. P., & Lee, J. K. (2017). Macrophage transcriptional profile identifies lipid catabolic pathways that can be therapeutically targeted after spinal cord injury. The Journal of Neuroscience, 37(9), 2362–2376. https://doi.org/10.1523/JNEUROSCI.2751-16.2017

Published

08-31-2024

How to Cite

Lee, D. (2024). The Relationship Between Lipids and Lipoproteins in Spinal Cord Injury: A review . Journal of Student Research, 13(3). https://doi.org/10.47611/jsrhs.v13i3.7480

Issue

Section

HS Review Articles