Mechanisms in Crossing the Blood-brain Barrier Using PLGA Nanoparticles
DOI:
https://doi.org/10.47611/jsrhs.v13i3.7411Keywords:
PLGA Nanoparticles, Blood-brain Barrier, Nanomedicine, Central Nervous SystemAbstract
Poly(lactic-co-glycolic acid) (PLGA) is a unique nanomaterial and polymer that stands out due to its unique properties. With crossing the BBB for drug delivery, PLGA shows promise. This literature review aims to examine the current research on the promising use of PLGA nanoparticles and their use of crossing the BBB. Crossing the BBB has remained a roadblock in drug delivery for a long time, and crossing this barrier would revolutionize drug delivery and would significantly benefit the medical community. This review will dive deep into the properties of PLGA nanoparticles, methods of drug delivery through the use of PLGA nanoparticles, and how these PLGA nanoparticles can efficiently and safely cross the BBB. Additionally, this review will highlight many studies showing the potential and effectiveness of PLGA nanoparticles in drug-delivery systems in the brain. Effectively crossing the BBB for drug delivery in the brain can change how doctors treat many neurological diseases and change the field of medicine and a future run by nanotechnology and nanomedicine. By utilizing current strategies in using PLGA nanoparticles in crossing the BBB, this review also aims to make PLGA one of the more critical nanoparticles for research in the future of nanomedicine.
Downloads
References or Bibliography
Anraku, Y., Kuwahara, H., Fukusato, Y., Mizoguchi, A., Ishii, T., Nitta, K., Matsumoto, Y., Toh, K., Miyata, K., Uchida, S., Nishina, K., Osada, K., Itaka, K., Nishiyama, N., Mizusawa, H., Yamasoba, T., Yokota, T., & Kataoka, K. (2017). Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nature Communications, 8(1), 1001. https://doi.org/10.1038/s41467-017-00952-3
Cunha, A., Gaubert, A., Latxague, L., & Dehay, B. (2021). PLGA-Based Nanoparticles for Neuroprotective Drug Delivery in Neurodegenerative Diseases. Pharmaceutics, 13(7), 1042. https://doi.org/10.3390/pharmaceutics13071042
Del Amo, L., Cano, A., Ettcheto, M., Souto, E. B., Espina, M., Camins, A., García, M. L., & Sánchez-López, E. (2021). Surface Functionalization of PLGA Nanoparticles to Increase Transport across the BBB for Alzheimer’s Disease. Applied Sciences, 11(9), 4305. https://doi.org/10.3390/app11094305
Dong, X. (2018). Current Strategies for Brain Drug Delivery. Theranostics, 8(6), 1481–1493. https://doi.org/10.7150/thno.21254
Dotiwala, A. K., McCausland, C., & Samra, N. S. (2023). Anatomy, Head and Neck: Blood Brain Barrier. PubMed; StatPearls Publishinghttps://www.ncbi.nlm.nih.gov/books/NBK519556/#:~:text=%5B1%5D%20The%20BBB%20is%20composed
Fodor-Kardos, A., Kiss, Á. F., Monostory, K., & Feczkó, T. (2020). Sustained in vitro interferon-beta release and in vivo toxicity of PLGA and PEG-PLGA nanoparticles. RSC Advances, 10(27), 15893–15900. https://doi.org/10.1039/c9ra09928j
Fornaguera, C., Feiner-Gracia, N., Calderó, G., García-Celma, M. J., & Solans, C. (2015). Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases. Nanoscale, 7(28), 12076–12084. https://doi.org/10.1039/c5nr03474d
Hersh, A. M., Alomari, S., & Tyler, B. M. (2022). Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. International Journal of Molecular Sciences, 23(8), 4153. https://doi.org/10.3390/ijms23084153
Jin, Y., Xu, A., Yao, Li, Jin, Y., & Ying, J. (2012). A physical model for the size-dependent cellular uptake of nanoparticles modified with cationic surfactants. International Journal of Nanomedicine, 3547. https://doi.org/10.2147/ijn.s32188
Knudsen, K. B., Northeved, H., Ek, P. K., Permin, A., Andresen, T. L., Larsen, S., Wegener, K. M., Lam, H. R., & Lykkesfeldt, J. (2014). Differential toxicological response to positively and negatively charged nanoparticles in the rat brain. Nanotoxicology, 8(7), 764–774. https://doi.org/10.3109/17435390.2013.829589
Lima, A. F., Amado, I. R., & Pires, L. R. (2020). Poly(d,l-lactide-co-glycolide) (PLGA) Nanoparticles Loaded with Proteolipid Protein (PLP)—Exploring a New Administration Route. Polymers, 12(12), 3063. https://doi.org/10.3390/polym12123063
Lockman, P. R., Koziara, J. M., Mumper, R. J., & Allen, D. D. (2004). Nanoparticle Surface Charges Alter Blood–Brain Barrier Integrity and Permeability. Journal of Drug Targeting, 12(9-10), 635–641. https://doi.org/10.1080/10611860400015936
Lou, J., Duan, H., Qin, Q., Teng, Z., Gan, F., Zhou, X., & Zhou, X. (2023). Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics, 15(2), 484–484. https://doi.org/10.3390/pharmaceutics15020484
Lu, Y., Cheng, D., Niu, B., Wang, X., Wu, X., & Wang, A. (2023). Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals, 16(3), 454. https://doi.org/10.3390/ph16030454
Meng, Q., Wang, A., Hua, H., Jiang, Y., Wang, Y., Mu, H., Wu, Z., & Sun, K. (2018). Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. International Journal of Nanomedicine, Volume 13, 705–718. https://doi.org/10.2147/ijn.s151474
Ohta, S., Kikuchi, E., Ishijima, A., Azuma, T., Sakuma, I., & Ito, T. (2020). Investigating the optimum size of nanoparticles for their delivery into the brain assisted by focused ultrasound-induced blood–brain barrier opening. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-75253-9
Rocha, C. V., Gonçalves, V., da Silva, M. C., Bañobre-López, M., & Gallo, J. (2022). PLGA-Based Composites for Various Biomedical Applications. International Journal of Molecular Sciences, 23(4), 2034. https://doi.org/10.3390/ijms23042034
Serlin, Y., Shelef, I., Knyazer, B., & Friedman, A. (2015). Anatomy and physiology of the blood–brain barrier. Seminars in Cell & Developmental Biology, 38, 2–6. https://doi.org/10.1016/j.semcdb.2015.01.002
Tahara, K., Miyazaki, Y., Kawashima, Y., Kreuter, J., & Yamamoto, H. (2011). Brain targeting with surface-modified poly(d,l-lactic-co-glycolic acid) nanoparticles delivered via carotid artery administration. European Journal of Pharmaceutics and Biopharmaceutics, 77(1), 84–88. https://doi.org/10.1016/j.ejpb.2010.11.002
Valenza, M., Chen, J. Y., Di Paolo, E., Ruozi, B., Belletti, D., Ferrari Bardile, C., Leoni, V., Caccia, C., Brilli, E., Di Donato, S., Boido, M. M., Vercelli, A., Vandelli, M. A., Forni, F., Cepeda, C., Levine, M. S., Tosi, G., & Cattaneo, E. (2015). Cholesterol‐loaded nanoparticles ameliorate synaptic and cognitive function in
Huntington’s disease mice. EMBO Molecular Medicine, 7(12), 1547–1564. https://doi.org/10.15252/emmm.201505413
Wu, D., Chen, Q., Chen, X., Han, F., Chen, Z., & Wang, Y. (2023). The blood–brain barrier: structure, regulation, and drug delivery. Signal Transduction and Targeted Therapy, 8(1), 1–27. https://doi.org/10.1038/s41392-023-01481-w
Yusuf, M., Khan, M., Alrobaian, M. M., Alghamdi, S. A., Warsi, M. H., Sultana, S., & Khan, R. A. (2020). Brain targeted Polysorbate-80 coated PLGA thymoquinone nanoparticles for the treatment of Alzheimer’s disease, with biomechanistic insights. Journal of Drug Delivery Science and Technology, 61, 102214. https://doi.org/10.1016/j.jddst.2020.102214
Published
How to Cite
Issue
Section
Copyright (c) 2024 Pranav Kavandal; Kristina Lilova, Jothsna Kethar

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright holder(s) granted JSR a perpetual, non-exclusive license to distriute & display this article.


