Genomic Potential of Bioaugmentation with Microbial N2O Reductase for Greenhouse Gas Mitigation

Authors

  • Seojin Jeong Chattahoochee High School
  • Jessica Cooper Chattahoochee High School

DOI:

https://doi.org/10.47611/jsrhs.v13i3.7364

Keywords:

Nitrous oxide, Microorganisms, Denitrification, Pathogens, nosZ, bacterium strains

Abstract

Nitrous oxide (N₂O) is a potent greenhouse gas that significantly contributes to climate change and stratospheric ozone depletion. This study explores the genomic potential of bioaugmentation using microorganisms possessing nitrous oxide reductase (N₂O reductase) to mitigate greenhouse gas emissions. We retrieved and analyzed 78 bacterial and archaeal N₂O reductase protein sequences from 12 different phyla. Our phylogenetic tree and pairwise heatmap analyses identified several promising microorganisms, including previously studied strains such as Pseudomonas stutzeri DCP-Ps1, Pseudomonas stutzeri PCN-1, and Anaeromyxobacter dehalogenans 2CP-C, and newly identified groups such as Euryarchaeota and Chloroflexota based on high growth kinetics and efficient N₂O reduction rates. Pathogenicity screening confirmed their safety for bioaugmentation applications. The study emphasizes the importance of leveraging microbial functions to combat climate change and calls for future research to explore the practical applications of bioaugmentation using these newly identified microorganisms.

Downloads

Download data is not yet available.

Author Biography

Jessica Cooper, Chattahoochee High School

Science Department/ Biology & Chemistry Teacher 

References or Bibliography

Brown, K., Tegoni, M., Prudêncio, M., Pereira, A. S., Besson, S., Moura, J. J., Moura, I., & Cambillau, C. (2000). A novel type of catalytic copper cluster in nitrous oxide reductase. Nature Structural Biology, 7(3), 191-195. https://doi.org/10.1038/73288

Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46(1-3), 11-43. https://doi.org/10.1016/j.compag.2004.10.005

Galibert, F., Finan, T. M., Long, S. R., Puhler, A., et al. (2001). The composite genome of the legume symbiont Sinorhizobium meliloti. Science, 293, 668-672.

Hallin, S., Philippot, L., Sanford, R. A., & Jones, C. M. (2018). Genomics and Ecology of Novel N2O-Reducing Microorganisms. Trends in Microbiology, 26(1), 43-55. https://doi.org/10.1016/j.tim.2017.07.003

He, G., Chen, G., Xie, Y., Swift, C. M., Ramirez, D., Cha, G., Konstantinidis, K. T., Radosevich, M., & Löffler, F. E. (2024). Sustained bacterial N2O reduction at acidic pH. Nature Communications, 15(4092). https://doi.org/10.1038/s41467-024-48236-x

Hong, P., Shu, Y., Wu, X., Wang, C., Tian, C., Wu, H., Donde, O. O., & Xiao, B. (2019). Efficacy of zero nitrous oxide emitting aerobic denitrifying bacterium, Methylobacterium gregans DC-1 in nitrate removal with strong auto-aggregation property. Bioresource Technology, 293, 122083. https://doi.org/10.1016/j.biortech.2019.122083

IPCC. (2019). Emissions from Livestock and Manure Management. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use. https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch10_Livestock.pdf

Liu, Y., Ai, G. M., Miao, L. L., & Liu, Z. P. (2016). Marinobacter strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N2O emission. Bioresource Technology, 206, 9-15. https://doi.org/10.1016/j.biortech.2016.01.066

McGuirl, M. A., Nelson, L. K., Bollinger, J. A., Chan, Y. K., & Dooley, D. M. (1998). The nos (nitrous oxide reductase) gene cluster from the soil bacterium Achromobacter cycloclastes: Cloning, sequence analysis, and expression. Journal of Inorganic Biochemistry, 70(2), 155-169. https://doi.org/10.1016/S0162-0134(98)10001-6

Mitra, R., Xu, T., Xiang, H., & Han, J. (2020). Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microbial Cell Factories, 19(86).

https://doi.org/10.1186/s12934-020-01342-z

Orellana, L. H., Rodriguez-R, L. M., Higgins, S., Chee-Sanford, J. C., Sanford, R. A., & Konstantinidis, K. T. (2014). Detecting nitrous oxide reductase (nosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle. mBio, 5(5), e01193-14. https://journals.asm.org/doi/pdf/10.1128/mbio.01193-14

Pan, S. Y., He, K. H., Lin, K. T., Fan, C., & Chang, C. T. (2022). Addressing nitrogenous gases from croplands toward low-emission agriculture. npj Climate and Atmospheric Science, 5(43).

https://doi.org/10.1038/s41612-022-00265-3

Robertson, G. P., & Groffman, P. M. (2015). Nitrogen Transformations. In Soil Microbiology, Ecology, and Biochemistry (pp. 421-443). Elsevier Inc. http://dx.doi.org/10.1016/B978-0-12-415955-6.00014-1

Siqueira, A. F., Minamisawa, K., & Sánchez, C. (2017). Anaerobic Reduction of Nitrate to Nitrous Oxide Is Lower in Bradyrhizobium japonicum than in Bradyrhizobium diazoefficiens. Microbes and Environments, 32(4), 398-401. https://doi.org/10.1264/jsme2.ME17081

Sudmeyer, R., Parker, J., Nath, T., & Ghose, A. (2014). Carbon farming in relation to Western Australian agriculture, Bulletin 4856, Department of Agriculture and Food, Western Australia. https://www.agric.wa.gov.au/sites/gateway/files/Carbon%20farming%20in%20relation%20to%20Western%20Australian%20agriculture%20-%20Bulletin%204856%20%28PDF%201.4MB%29.pdf

Suenaga, T., Riya, S., Hosomi, M., & Terada, A. (2018). Biokinetic Characterization and Activities of N2O-Reducing Bacteria in Response to Various Oxygen Levels. Frontiers in Microbiology, 9, 697. https://doi.org/10.3389/fmicb.2018.00697

Tian, T., Li, Q., Zhuang, Z., Zhuang, G., & Sun, H. (2021). Bioaugmentation enhanced the resistance to nitrite and reduced N2O generation via nitrite reduction. Bioresource Technology, 337, 125364. https://www.sciencedirect.com/science/article/abs/pii/S0960852421010452#:~:text=Bioaugmentation%20enhanced%20the%20resistance%20to,O%20generation%20via%20nitrite%20reduction

United States Department of Agriculture (USDA). (2020). U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2018. Technical Bulletin No. 1957.

https://www.usda.gov/sites/default/files/documents/USDA-GHG-Inventory-1990-2018.pdf

United States Environmental Protection Agency. (2024). Overview of Greenhouse Gas. Accessed 04 May 2024. https://www.epa.gov/ghgemissions/overview-greenhouse-gases#:~:text=Total%20U.S.%20Emissions%20in%202022,of%20these%20greenhouse%20gas%20emissions.

Yadav, R. K., Tripathi, M. K., Tiwari, S., Tripathi, N., Asati, R., Chauhan, S., Tiwari, P. N., & Payasi, D. K. (2023). Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants. Life, 13, 1456. https://doi.org/10.3390/life13071456

Yoon, S., Nissen, S., Park, D., Sanford, R. A., & Löffler, F. E. (2016). Nitrous oxide reduction kinetics distinguish bacteria harboring clade I NosZ from those harboring clade II NosZ. Applied and Environmental Microbiology, 82(13), 3793-3800. https://doi.org/10.1128/AEM.00409-16

Published

08-31-2024

How to Cite

Jeong, S., & Cooper, J. (2024). Genomic Potential of Bioaugmentation with Microbial N2O Reductase for Greenhouse Gas Mitigation. Journal of Student Research, 13(3). https://doi.org/10.47611/jsrhs.v13i3.7364

Issue

Section

HS Research Articles