A Review of Algae Platforms for Enhanced CO2 Capture and Biofuel via RuBisCO Pathway Analysis

Authors

  • Alex Ahn Peachtree Ridge High School
  • Myat Pho Peachtree Ridge High School

DOI:

https://doi.org/10.47611/jsrhs.v13i3.7345

Keywords:

Carbon capture, Biofuel production, RuBisCO pathway, Algae platforms, Genetic diversity

Abstract

Climate change, driven primarily by greenhouse gas (GHG) emissions, poses a global challenge. Traditional CO2 mitigation methods are complemented by biological sequestration via photosynthesis, notably facilitated by the enzyme RuBisCO. Algae, particularly green algae (Chlorophyta), are efficient in converting CO2 into biofuels, contributing to both carbon cycling and renewable energy solutions. This review examines current algae-based platforms for carbon capture and biofuel production, focusing on the RuBisCO pathway in diverse algal species. The study evaluates the genetic diversity and biofuel production potential of various algae, emphasizing the importance of identifying new algal candidates and conducting comprehensive toxicity screenings. Based on the RuBisCO pathway analysis via phylogenetic tree and pairwise protein comparison, genera Edaphochlamys, Pleodorina, Colemanosphaera, Astrephomene, and Volvulina in the Chlorophyta phylum, along with genera Uroglenopsis, Lagynion, Naegeliella, and Poteriospumella in the Chrysophyta phylum, are suggested as potential biofuel production candidates. By expanding the search for genetically diverse algal species and optimizing cultivation conditions, algae can be further developed as a viable platform for biofuel production and CO2 sequestration. This review underscores the ecological and economic benefits of employing algae in biosequestration and biofuel industries, advocating for continued interdisciplinary research and collaboration to realize algae's full potential in renewable energy technologies.

Downloads

Download data is not yet available.

References or Bibliography

Abdallah, Q. A., Nixon, B. T., & Fortwendel, J. R. (2016). The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol Frontiers in Energy Research. 4:36.

https://doi.org/10.3389/fenrg.2016.00036

Adeniyi, O. M., Azimov, U., & Burluka, A. (2018). Algae biofuel: Current status and future applications. Renewable and Sustainable Energy Reviews, 90, 316-335. https://doi.org/10.1016/j.rser.2018.03.067

Alaswad, A., Dassisti, M., Prescott, T., & Olabi, A. G. (2015). Technologies and developments of third-generation biofuel production. Renewable and Sustainable Energy Reviews, 51, 1446-1460. https://doi.org/10.1016/j.rser.2015.07.058

Ali, M., & Watson, I. A. (2015). Microwave thermolysis and lipid recovery from dried microalgae powder for biodiesel production. Energy Technology, 4, 319-330. https://doi.org/10.1002/ente.201500242

Al-Ansari, M. M., Al-Humaid, L., Dahmash, N. A., & Aldawsari, M. (2023). Assessing the benefits of Chlorella vulgaris microalgal biodiesel for internal combustion engines: Energy and exergy analyses. Fuel, 344, 128055. https://doi.org/10.1016/j.fuel.2023.128055

Bastos, R. G. (2018). Biofuels from Microalgae: Bioethanol. In E. Jacob-Lopes, L. Q. Zepka, & M. I. Queiroz (Eds.), Energy from Microalgae (pp. 229-237). Springer.

Baroukh, C., Munoz-Tamayo, R., Steyer, J. P., & Bernard, O. (2015). A Comprehensive Dynamic Model of Microalgae Metabolism: From Light-Dark Cycles to Industrial Applications. Bioresource Technology, 182, 326-338. http://dx.doi.org/10.1016/j.copbio.2015.03.002

Borines, M. G., de Leon, R. L., & Cuello, J. L. (2013). Bioethanol production from the macroalgae Sargassum spp. Bioresource Technology, 138, 22-29. https://doi.org/10.1016/j.biortech.2013.03.108

Borowitzka, M. A. (1992). Algal biotechnology products and processes—matching science and economics. Journal of Applied Phycology, 4(3), 267-279. https://doi.org/10.1007/BF02161212

Chandrasekhar, T., Varaprasad, D., Gnaneswari, P., Swapna, B., Riazunnisa, K., Prasanna, V. A., Korivi, M., Wee, Y.-J., Lebaka, V.R. (2023). Algae: The Reservoir of Bioethanol. Fermentation, 9(8), 712. https://doi.org/10.3390/fermentation9080712

Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., Bai, F. W. & Chang, J. S. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1-10. https://doi.org/10.1016/j.bej.2013.03.006

Chen, W.-H., Peng, J., & Bi, X. T. (2015). A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews, 44, 847-866. https://doi.org/10.1016/j.rser.2014.12.039

Cheng, J., Huang, Y., Feng, J., Sun, J., & Zhou, J. (2014). Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction. Bioresource Technology, 151, 415-418. https://doi.org/10.1016/j.biortech.2013.10.033

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001

Choi, G. W., Um, H. J., & Kang, H. W. (2010). Bioethanol production by a flocculent hybrid, CHFY0321 obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus. Biomass and Bioenergy, 34(8), 1232-1242. https://doi.org/10.1016/j.biombioe.2010.03.018

Cotas, J., Gomes, L., Pacheco, D., Pereira, L. (2023). Ecosystem Services Provided by Seaweeds. Hydrobiology, 2, 75–96. https://doi.org/10.3390/hydrobiology2010006

Cuellar-Bermudez, S. P., Garcia-Perez, J. S., Rittmann, B. E., & Parra-Saldivar, R. (2015). Photosynthetic bioenergy utilizing CO2: An approach on flue gases utilization for third generation biofuels. Journal of Cleaner Production, 98, 53-65. https://doi.org/10.1016/j.jclepro.2014.03.034

El-Mekkawi, S. A., Abdo, S. M., Samhan, F. A., & Ali, G. H. (2019). Optimization of some fermentation conditions for bioethanol production from microalgae using response surface method. Bulletin of the National Research Centre, 43, 164. https://doi.org/10.1186/s42269-019-0205-8

Günnerken, E., D’Hondt, E., Eppink, M. H., Garcia-Gonzalez, L., Elst, K., & Wijffels, R. H. (2015). Cell disruption for microalgae biorefineries. Biotechnology Advances, 33(2), 243-260. https://doi.org/10.1016/j.biotechadv.2015.01.008

Hannon, M., Gimpel, J., Tran, M., Rasala, B., & Mayfield, S. (2010). Biofuels from algae: challenges and potential. Biofuels, 1(5), 763-784. https://doi.org/10.4155/bfs.10.44

He, P., Mao, B., Shen, C., Shao, L., Lee, D. J., & Chang, J. S. (2008). Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresource Technology, 129:177-81.

https://doi.org/10.1016/j.biortech.2012.10.162

Hossain, N., Mahlia, T. M. I., & Saidur, R. (2019). Latest development in microalgae-biofuel production with nano-additives. Biotechnology for Biofuels, 12(125). https://doi.org/10.1186/s13068-019-1465-0

Hunter, P. (2017). The role of biology in global climate change. EMBO Reports, 18(5), 673-676. https://doi.org/10.15252/embr.201744260

Jena, U., Das, K. C., & Kastner, J. R. (2011). Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technology, 102(7), 6221-6229. https://doi.org/10.1016/j.biortech.2011.02.057

Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17, 36. https://doi.org/10.1186/s12934-018-0879-x

Kojima, E., & Zhang, K. (1999). Growth and hydrocarbon production of microalga Botryococcus braunii in bubble column photobioreactors. Journal of Bioscience and Bioengineering, 87(6), 811-815. https://doi.org/10.1016/s1389-1723(99)80158-3

Kostygov, A. Y., Karnkowska, A., Votýpka, J., Tashyreva, D., Maciszewski, K., Yurchenko, V., & Lukeš, J. (2021). Euglenozoa: Taxonomy, diversity and ecology, symbioses and viruses. Open Biology, 11(3), 200407. https://doi.org/10.1098/rsob.200407

Lee, O. K., Kim, A. L., Seong, D. H., Lee, C. G., Jung, Y. T., & Lee, J. W. (2013). Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresource Technology, 132, 197-201. https://doi.org/10.1016/j.biortech.2013.01.007

Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2014). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81(4), 629-636. https://doi.org/10.1007/s00253-008-1681-1

Ma, X.-N., Chen, T.-P., Yang, B., Liu, J., & Chen, F. (2016). Lipid production from Nannochloropsis. Marine Drugs, 14(4), 61. https://doi.org/10.3390/md14040061

Mahmood, T., Hussain, N., Shahbaz, A., Mulla, S. I., Iqbal, H. M. N., & Bilal, M. (2023). Sustainable production of biofuels from the algae-derived biomass. Bioprocess and Biosystems Engineering, 46(9), 1077-1097. https://doi.org/10.1007/s00449-022-02796-8

Neeti, K., Gaurav, K., & Singh, R. (2023). The potential of algae biofuel as a renewable and sustainable bioresource. Engineering Proceedings, 37(22). https://doi.org/10.3390/ECP2023-14716

Parker, M. S., Mock, T., & Armbrust, E. V. (2008). Genomic insights into marine microalgae. Annual Review of Genetics, 42, 619-645. https://doi.org/10.1146/annurev.genet.42.110807.091417

Parniakov, O., Barba, F. J., Grimi, N., Marchal, L., Jubeau, S., Lebovka, N., & Vorobiev, E. (2015). Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae Nannochloropsis. Algal Research, 8, 128-134. https://doi.org/10.1016/j.algal.2015.01.014

Prabakaran, P., & Karthikeyan, S. (2023). Algae biofuel: A futuristic, sustainable, renewable and green fuel for I.C. engines. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.579

Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86(10), 807-815. https://doi.org/10.1016/j.biochi.2004.09.017

Sakarika, M., & Kornaros, M. (2019). Chlorella vulgaris as a green biofuel factory: Comparison between biodiesel, biogas, and combustible biomass production. Bioresource Technology, 273, 237-243. https://doi.org/10.1016/j.biortech.2018.11.017

Shuping, Z., Yulong, W., Mingde, Y., Chun, L., & Junmao, T. (2010). Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresource Technology, 101(2), 359-365. https://doi.org/10.1016/j.biortech.2009.08.020

Silva, C. E. F., & Bertucco, A. (2017). Bioethanol from Microalgal Biomass: A Promising Approach in Biorefinery. Brazilian Archives of Biology and Technology, 62, e19160816. https://doi.org/10.1590/1678-4324-2019160816

Sirajunnisa, A. R., & Surendhiran, D. (2016). Algae – A Quintessential and Positive Resource of Bioethanol Production: A Comprehensive Review. Renewable and Sustainable Energy Reviews, 66, 248-267. https://doi.org/10.1016/j.rser.2016.07.024

Srivastava, N., & Mishra, P. K. (Eds.). (2023). Clean Energy Production Technologies. Springer. ISBN: 9783031184311.

Suganya, T., Varman, M., Masjuki, H. H., & Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909-941. http://dx.doi.org/10.1016/j.rser.2015.11.026

United States Environmental Protection Agency. (2024). Inventory of U.S. Greenhouse Gas Emissions and Sinks. LAST UPDATED ON APRIL 11, 2024. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks

Velazquez-Lucio, J., Rodríguez-Jasso, R. M., Colla, L. M., Sáenz-Galindo, A., Cervantes-Cisneros, D. E., Aguilar, C. N., Fernandes, B. D., & Ruiz, H. A. (2018). Microalgal biomass pretreatment for bioethanol production: A review. Biofuel Research Journal, 17, 780-791. https://doi.org/10.18331/BRJ2018.5.1.5

Xie, Y., Ho, S.-H., Chen, C.-N. N., Chen, C.-Y., Jing, K., Ng, I.-S., Chen, J., Chang, J.-S., & Lu, Y. (2016). Disruption of thermo-tolerant Desmodesmus sp. F51 in high pressure homogenization as a prelude to carotenoids extraction. Biochemical Engineering Journal, 109, 243-251. https://doi.org/10.1016/j.bej.2016.01.003

Zbinden, M. D., Sturm, B. S. M., Nord, R. D., Carey, W. J., Moore, D., Shinogle, H., & Stagg-Williams, S. M. (2013). Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnology and Bioengineering, 110(6), 1605-1615. https://doi.org/10.1002/bit.24829

Published

08-31-2024

How to Cite

Ahn, A., & Pho, M. (2024). A Review of Algae Platforms for Enhanced CO2 Capture and Biofuel via RuBisCO Pathway Analysis. Journal of Student Research, 13(3). https://doi.org/10.47611/jsrhs.v13i3.7345

Issue

Section

HS Review Articles