CAR-T Cell Therapy for Solid Tumors: A Review of Challenges and Emerging Solutions

Authors

  • Daniel Hong
  • Ana Leda Figueiredo Longhini

DOI:

https://doi.org/10.47611/jsrhs.v13i3.7230

Keywords:

T-cell, CAR-T Cell Therapy, Solid Tumors, Immune Checkpoint Blockade, Dominant Negative Receptors, Regional Delivery, Intrapleural Injection, Intracerebroventricular injection, CXCR2, IL-8, Immunosuppressive Cytokine

Abstract

​​Chimeric antigen receptor (CAR)-T cell therapy is a promising immunotherapy for hematological malignancies. However, its application to solid tumors is limited by challenges such as the immunosuppressive tumor microenvironment, poor T-cell trafficking and infiltration, and on-target off-tumor toxicity. This review article discusses innovative strategies to address these limitations and enhance CAR-T cell efficacy against solid tumors. One approach involves engineering CAR-T cells to express checkpoint blockade inhibitors or dominant negative receptors to counteract immunosuppressive signals. Alternatively, CAR-T cells can be modified to secrete immunostimulatory cytokines or resist immunosuppressive factors like TGF-β. To improve T-cell trafficking and infiltration, regional delivery methods such as intrapleural or intracerebroventricular injection can be employed. Additionally, equipping CAR-T cells with chemokine receptors that match tumor-derived chemokines can enhance their homing ability. Overall, these emerging strategies hold the potential to overcome the current obstacles and expand the therapeutic applications of CAR-T cell therapy for solid tumors.

Downloads

Download data is not yet available.

References or Bibliography

Adusumilli, P. S., Cherkassky, L., Villena-Vargas, J., Colovos, C., Servais, E., Plotkin, J., Jones, D. R., & Sadelain, M. (2014). Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Science translational medicine, 6(261), 261ra151. https://doi.org/10.1126/scitranslmed.3010162

Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D. R., Steins, M., Ready, N. E., Chow, L. Q., Vokes, E. E., Felip, E., Holgado, E., Barlesi, F., Kohlhäufl, M., Arrieta, O., Burgio, M. A., Fayette, J., Lena, H., Poddubskaya, E., Gerber, D. E., Gettinger, S. N., & Rudin, C. M. (2015). Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. New England Journal of Medicine, 373(17), 1627–1639. https://doi.org/10.1056/nejmoa1507643

“Car T Cells: Engineering Immune Cells to Treat Cancer.” CAR T Cells: Engineering Immune Cells to Treat Cancer - National Cancer Institute, 10 Mar. 2022, www.cancer.gov/about-cancer/treatment/research/car-t-cells.

Curtsinger, J. M., Lins, D. C., & Mescher, M. F. (2003). Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. The Journal of experimental medicine, 197(9), 1141–1151. https://doi.org/10.1084/jem.20021910

Dana, H., Chalbatani, G. M., Jalali, S. A., Mirzaei, H. R., Grupp, S. A., Suarez, E. R., Rapôso, C., & Webster, T. J. (2021). CAR-T cells: Early successes in blood cancer and challenges in solid tumors. Acta pharmaceutica Sinica. B, 11(5), 1129–1147. https://doi.org/10.1016/j.apsb.2020.10.020

Grosser, R., Cherkassky, L., Chintala, N., & Adusumilli, P. S. (2019). Combination Immunotherapy with CAR T Cells and Checkpoint Blockade for the Treatment of Solid Tumors. Cancer cell, 36(5), 471–482. https://doi.org/10.1016/j.ccell.2019.09.006

“Hemophagocytic Lymphohistiocystosis.” Johns Hopkins Medicine, 22 May 2024, www.hopkinsmedicine.org/health/conditions-and-diseases/hemophagocytic-lymphohistiocystosis.

Huang, A. C., Postow, M. A., Orlowski, R. J., Mick, R., Bengsch, B., Manne, S., Xu, W., Harmon, S., Giles, J. R., Wenz, B., Adamow, M., Kuk, D., Panageas, K. S., Carrera, C., Wong, P., Quagliarello, F., Wubbenhorst, B., D'Andrea, K., Pauken, K. E., Herati, R. S., … Wherry, E. J. (2017). T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature, 545(7652), 60–65. https://doi.org/10.1038/nature22079

“Immune Checkpoint Inhibitors.” NCI, 7 Apr. 2022, www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors#:~:text=Checkpoint%20proteins%2C%20such%20as%20PD,the%20body%20(left%20panel).

Jiang, Y., Chen, M., Nie, H., & Yuan, Y. (2019). PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Human vaccines & immunotherapeutics, 15(5), 1111–1122. https://doi.org/10.1080/21645515.2019.1571892

John, L. B., Devaud, C., Duong, C. P., Yong, C. S., Beavis, P. A., Haynes, N. M., Chow, M. T., Smyth, M. J., Kershaw, M. H., & Darcy, P. K. (2013). Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clinical cancer research : an official journal of the American Association for Cancer Research, 19(20), 5636–5646. https://doi.org/10.1158/1078-0432.CCR-13-0458

Krenciute, G., Prinzing, B. L., Yi, Z., Wu, M. F., Liu, H., Dotti, G., Balyasnikova, I. V., & Gottschalk, S. (2017). Transgenic Expression of IL15 Improves Antiglioma Activity of IL13Rα2-CAR T Cells but Results in Antigen Loss Variants. Cancer immunology research, 5(7), 571–581. https://doi.org/10.1158/2326-6066.CIR-16-0376

Koneru, M., Purdon, T. J., Spriggs, D., Koneru, S., & Brentjens, R. J. (2015). IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology, 4(3), e994446. https://doi.org/10.4161/2162402X.2014.994446

Li, X., Wu, G., Chen, C., Zhao, Y., Zhu, S., Song, X., Yin, J., Lv, T., & Song, Y. (2021). Intrapleural Injection of Anti-PD1 Antibody: A Novel Management of Malignant Pleural Effusion. Frontiers in immunology, 12, 760683. https://doi.org/10.3389/fimmu.2021.760683

Liu, G., Rui, W., Zheng, H., Huang, D., Yu, F., Zhang, Y., Dong, J., Zhao, X., & Lin, X. (2020). CXCR2-modified CAR-T cells have enhanced trafficking ability that improves treatment of hepatocellular carcinoma. European journal of immunology, 50(5), 712–724. https://doi.org/10.1002/eji.201948457

Martín-Rojas, R. M., Gómez-Centurión, I., Bailén, R., Bastos, M., Diaz-Crespo, F., Carbonell, D., Correa-Rocha, R., Pion, M., Muñoz, C., Sancho, M., Gómez Fernández, I., Oarbeascoa, G., Pérez-Corral, A., Martínez-Laperche, C., Anguita, J., Buño, I., Menárguez, J., Díez-Martín, J. L., & Kwon, M. (2022). Hemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS) following treatment with tisagenlecleucel. Clinical case reports, 10(1), e05209. https://doi.org/10.1002/ccr3.5209

Mohammed, S., Sukumaran, S., Bajgain, P., Watanabe, N., Heslop, H. E., Rooney, C. M., Brenner, M. K., Fisher, W. E., Leen, A. M., & Vera, J. F. (2017). Improving Chimeric Antigen Receptor-Modified T Cell Function by Reversing the Immunosuppressive Tumor Microenvironment of Pancreatic Cancer. Molecular therapy : the journal of the American Society of Gene Therapy, 25(1), 249–258. https://doi.org/10.1016/j.ymthe.2016.10.016

Poorebrahim, M., Melief, J., Pico de Coaña, Y., L. Wickström, S., Cid-Arregui, A., & Kiessling, R. (2021). Counteracting CAR T cell dysfunction. Oncogene, 40(2), 421–435. https://doi.org/10.1038/s41388-020-01501-x

Priceman, S. J., Tilakawardane, D., Jeang, B., Aguilar, B., Murad, J. P., Park, A. K., Chang, W. C., Ostberg, J. R., Neman, J., Jandial, R., Portnow, J., Forman, S. J., & Brown, C. E. (2018). Regional Delivery of Chimeric Antigen Receptor-Engineered T Cells Effectively Targets HER2+ Breast Cancer Metastasis to the Brain. Clinical cancer research : an official journal of the American Association for Cancer Research, 24(1), 95–105. https://doi.org/10.1158/1078-0432.CCR-17-2041

‌Rupp, L. J., Schumann, K., Roybal, K. T., Gate, R. E., Ye, C. J., Lim, W. A., & Marson, A. (2017). CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Scientific reports, 7(1), 737. https://doi.org/10.1038/s41598-017-00462-8

Sanjabi, S., Oh, S. A., & Li, M. O. (2017). Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harbor perspectives in biology, 9(6), a022236. https://doi.org/10.1101/cshperspect.a022236

Sterner, R. M., Sakemura, R., Cox, M. J., Yang, N., Khadka, R. H., Forsman, C. L., Hansen, M. J., Jin, F., Ayasoufi, K., Hefazi, M., Schick, K. J., Walters, D. K., Ahmed, O., Chappell, D., Sahmoud, T., Durrant, C., Nevala, W. K., Patnaik, M. M., Pease, L. R., Hedin, K. E., … Kenderian, S. S. (2019). GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood, 133(7), 697–709. https://doi.org/10.1182/blood-2018-10-881722

Sterner, R. C., & Sterner, R. M. (2021). CAR-T cell therapy: current limitations and potential strategies. Blood cancer journal, 11(4), 69. https://doi.org/10.1038/s41408-021-00459-7

Tanoue, K., Rosewell Shaw, A., Watanabe, N., Porter, C., Rana, B., Gottschalk, S., Brenner, M., & Suzuki, M. (2017). Armed Oncolytic Adenovirus-Expressing PD-L1 Mini-Body Enhances Antitumor Effects of Chimeric Antigen Receptor T Cells in Solid Tumors. Cancer research, 77(8), 2040–2051. https://doi.org/10.1158/0008-5472.CAN-16-1577

Xiang, X., Yu, P. C., Long, D., Liao, X. L., Zhang, S., You, X. M., Zhong, J. H., & Li, L. Q. (2017). Prognostic value of PD -L1 expression in patients with primary solid tumors. Oncotarget, 9(4), 5058–5072. https://doi.org/10.18632/oncotarget.23580

Zang X. (2018). 2018 Nobel Prize in medicine awarded to cancer immunotherapy: Immune checkpoint blockade - A personal account. Genes & diseases, 5(4), 302–303. https://doi.org/10.1016/j.gendis.2018.10.003

Published

08-31-2024

How to Cite

Hong, D., & Longhini, A. (2024). CAR-T Cell Therapy for Solid Tumors: A Review of Challenges and Emerging Solutions. Journal of Student Research, 13(3). https://doi.org/10.47611/jsrhs.v13i3.7230

Issue

Section

HS Review Articles