Comparison Of 3D Structures Generated by AlphaFold2 to Experimental Structures In Oncogenic Proteins


  • Simar Rajpal John P. Stevens High School
  • Dr. Daniel Plymire University of Texas Southwestern Medical Center



Artificial Intelligence, Machine Learning, AlphaFold2, Oncogenic Proteins, Convolutional Neural Network


AlphaFold2 is a machine-learning algorithm that can predict the 3D structure of proteins. 3D protein structures are essential for understanding the function of oncogenic proteins, which can potentially cause cancer. In this study, we compared the structure of 26 oncogenic proteins found experimentally and computationally using AlphaFold2. We used RMSD values to measure how well the AlphaFold2 model fit the experimentally derived protein structures. RMSD values for the oncogenic proteins ranged from 0.204 Å to 1.980 Å with an average of 0.633 Å, showing that AlphaFold2 was a promising tool for predicting the 3D structure of oncogenic proteins. However, we noted that AlphaFold2 has limitations in predicting the structure of highly disordered proteins, proteins with multiple conformations, mutated and artificial proteins, and proteins that are not well-studied experimentally. Our study suggests that AlphaFold2 could be used to identify new targets for cancer treatment and design drugs that can fit into the binding sites of oncogenic proteins. We also hypothesize that AlphaFold2 could be improved by increasing the amount of data available for training, improving the resolution of current data, and using it in conjunction with other protein structure models. We believe that AlphaFold2 is a powerful tool for predicting the structure of oncogenic proteins. Despite the current limitations, we are optimistic that future research will improve AlphaFold2, finding use in cancer research.


Download data is not yet available.

References or Bibliography

Institute of Medicine (US) Committee on Military Nutrition Research, Poos, M. I., Costello, R., & Carlson-Newberry, S. J. (1999). Committee on Military Nutrition Research: Activity Report. National Academies Press (US)

Dunham, B., & Ganapathiraju, M. K. (2021). Benchmark Evaluation of Protein-Protein Interaction Prediction Algorithms. Molecules (Basel, Switzerland), 27(1), 41.

Newberry, R. W., & Raines, R. T. (2019). Secondary Forces in Protein Folding. ACS chemical biology, 14(8), 1677–1686.

Kuhlman, B., & Bradley, P. (2019). Advances in protein structure prediction and design. Nature reviews. Molecular cell biology, 20(11), 681–697.

Konc, J., & Janežič, D. (2022). Protein binding sites for drug design. Biophysical reviews, 14(6), 1413–1421.

Bergquist, S., Otten, T., & Sarich, N. (2020). COVID-19 pandemic in the United States. Health policy and technology, 9(4), 623–638.

Msemburi, W., Karlinsky, A., Knutson, V., Aleshin-Guendel, S., Chatterji, S., & Wakefield, J. (2023). The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature, 613(7942), 130–137.

Thorn, C. R., Sharma, D., Combs, R., Bhujbal, S., Romine, J., Zheng, X., Sunasara, K., & Badkar, A. (2022). The journey of a lifetime - development of Pfizer's COVID-19 vaccine. Current opinion in biotechnology, 78, 102803.

Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, N.Y.), 367(6483), 1260–1263.

Huang, Y., Yang, C., Xu, X. F., Xu, W., & Liu, S. W. (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta pharmacologica Sinica, 41(9), 1141–1149.

Harvey, W. T., Carabelli, A. M., Jackson, B., Gupta, R. K., Thomson, E. C., Harrison, E. M., Ludden, C., Reeve, R., Rambaut, A., COVID-19 Genomics UK (COG-UK) Consortium, Peacock, S. J., & Robertson, D. L. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nature reviews. Microbiology, 19(7), 409–424.

Dill, K. A., Ozkan, S. B., Shell, M. S., & Weikl, T. R. (2008). The protein folding problem. Annual review of biophysics, 37, 289–316.

Anfinsen C. B. (1973). Principles that govern the folding of protein chains. Science (New York, N.Y.), 181(4096), 223–230.

Kaffe-Abramovich, T., & Unger, R. (1998). A simple model for evolution of proteins towards the global minimum of free energy. Folding & design, 3(5), 389–399.

Li, J., Hou, C., Ma, X., Guo, S., Zhang, H., Shi, L., Liao, C., Zheng, B., Ye, L., Yang, L., & He, X. (2021). Entropy-Enthalpy Compensations Fold Proteins in Precise Ways. International journal of molecular sciences, 22(17), 9653.

Sorokina, I., Mushegian, A. R., & Koonin, E. V. (2022). Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process?. International journal of molecular sciences, 23(1), 521.

Dobson C. M. (2019). Biophysical Techniques in Structural Biology. Annual review of biochemistry, 88, 25–33.

Smyth, M. S., & Martin, J. H. (2000). x ray crystallography. Molecular pathology: MP, 53(1), 8–14.

Marion D. (2013). An introduction to biological NMR spectroscopy. Molecular & cellular proteomics : MCP, 12(11), 3006–3025.

Murata, K., & Wolf, M. (2018). Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochimica et biophysica acta. General subjects, 1862(2), 324–334.

Holcomb, J., Spellmon, N., Zhang, Y., Doughan, M., Li, C., & Yang, Z. (2017). Protein crystallization: Eluding the bottleneck of X-ray crystallography. AIMS biophysics, 4(4), 557–575.

AlQuraishi M. (2021). Machine learning in protein structure prediction. Current opinion in chemical biology, 65, 1–8.

Meller, A., Ward, M., Borowsky, J., Kshirsagar, M., Lotthammer, J. M., Oviedo, F., Ferres, J. L., & Bowman, G. R. (2023). Predicting locations of cryptic pockets from single protein structures using the PocketMiner graph neural network. Nature communications, 14(1), 1177.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589.

Mihaly Varadi and others, AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models, Nucleic Acids Research, Volume 50, Issue D1, 7 January 2022, Pages D439–D444,

Marcu, Ş.-B., Tăbîrcă, S., & Tangney, M. (2022). An overview of Alphafold’s breakthrough. Frontiers in Artificial Intelligence, 5.

Bouatta, N., Sorger, P., & AlQuraishi, M. (2021). Protein structure prediction by AlphaFold2: are attention and symmetries all you need?. Acta crystallographica. Section D, Structural biology, 77(Pt 8), 982–991.

Higgins M. K. (2021). Can We AlphaFold Our Way Out of the Next Pandemic?. Journal of molecular biology, 433(20), 167093.

Matthews, H. K., Bertoli, C., & de Bruin, R. A. M. (2022). Cell cycle control in cancer. Nature reviews. Molecular cell biology, 23(1), 74–88.

Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: a cancer journal for clinicians, 73(1), 17–48.

Ershler W. B. (2003). Cancer: a disease of the elderly. The journal of supportive oncology, 1(4 Suppl 2), 5–10.

Disis, M. L., & Cheever, M. A. (1996). Oncogenic proteins as tumor antigens. Current opinion in immunology, 8(5), 637–642.

Williams, G. H., & Stoeber, K. (2012). The cell cycle and cancer. The Journal of pathology, 226(2), 352–364.

Yip, H. Y. K., & Papa, A. (2021). Signaling Pathways in Cancer: Therapeutic Targets, Combinatorial Treatments, and New Developments. Cells, 10(3), 659.

Weinberg R. A. (1994). Oncogenes and tumor suppressor genes. CA: a cancer journal for clinicians, 44(3), 160–170.

Rudiman, R., Wijaya, A., Sribudiani, Y., Soedjana, H. S., Wiraswati, H. L., Pramaswati, E., Nugraha, P., & Lukman, K. (2023). Identification of KRAS mutation and HER2 expression in Indonesian colorectal cancer population: a cross-sectional study. Annals of medicine and surgery (2012), 85(5), 1761–1768.

Ramus, S. J., Bobrow, L. G., Pharoah, P. D., Finnigan, D. S., Fishman, A., Altaras, M., Harrington, P. A., Gayther, S. A., Ponder, B. A., & Friedman, L. S. (1999). Increased frequency of TP53 mutations in BRCA1 and BRCA2 ovarian tumours. Genes, chromosomes & cancer, 25(2), 91–96.<91::aid-gcc3>;2-5

Batool, M., Ahmad, B., & Choi, S. (2019). A Structure-Based Drug Discovery Paradigm. International journal of molecular sciences, 20(11), 2783.

An, X., Tiwari, A. K., Sun, Y., Ding, P. R., Ashby, C. R., Jr, & Chen, Z. S. (2010). BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leukemia research, 34(10), 1255–1268.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic acids research, 28(1), 235–242.

The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.

Kufareva, I., & Abagyan, R. (2012). Methods of protein structure comparison. Methods in molecular biology (Clifton, N.J.), 857, 231–257.

Goodsell D. S. (2005). Visual methods from atoms to cells. Structure (London, England : 1993), 13(3), 347–354.

Lee, C., Su, B. H., & Tseng, Y. J. (2022). Comparative studies of AlphaFold, RoseTTAFold and Modeller: a case study involving the use of G-protein-coupled receptors. Briefings in bioinformatics, 23(5), bbac308.

Castel, P., Rauen, K. A., & McCormick, F. (2020). The duality of human oncoproteins: drivers of cancer and congenital disorders. Nature reviews. Cancer, 20(7), 383–397.

Perrakis, A., & Sixma, T. K. (2021). AI revolutions in biology: The joys and perils of AlphaFold. EMBO reports, 22(11), e54046.

Mou, Y., Huang, P. S., Hsu, F. C., Huang, S. J., & Mayo, S. L. (2015). Computational design and experimental verification of a symmetric protein homodimer. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 10714–10719.

Drake, Z.C., Seffernick, J.T. & Lindert, S. Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling. Nat Commun 13, 7846 (2022).

Ren, F., Ding, X., Zheng, M., Korzinkin, M., Cai, X., Zhu, W., Mantsyzov, A., Aliper, A., Aladinskiy, V., Cao, Z., Kong, S., Long, X., Man Liu, B. H., Liu, Y., Naumov, V., Shneyderman, A., Ozerov, I. V., Wang, J., Pun, F. W., Polykovskiy, D. A., … Zhavoronkov, A. (2023). AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor. Chemical science, 14(6), 1443–1452.

Keskin Karakoyun, H., Yüksel, Ş. K., Amanoglu, I., Naserikhojasteh, L., Yeşilyurt, A., Yakıcıer, C., Timuçin, E., & Akyerli, C. B. (2023). Evaluation of alphafold structure-based protein stability prediction on missense variations in cancer. Frontiers in Genetics, 14.

Hekkelman, M. L., de Vries, I., Joosten, R. P., & Perrakis, A. (2023). AlphaFill: enriching AlphaFold models with ligands and cofactors. Nature methods, 20(2), 205–213.

Ruff, K. M., & Pappu, R. V. (2021). AlphaFold and Implications for Intrinsically Disordered Proteins. Journal of molecular biology, 433(20), 167208.

Hou, M.-H., Jin, S.-R., Cui, X.-Y., Peng, C.-X., Zhao, K.-L., Song, L., & Zhang, G.-J. (2023). Protein Multiple Conformations Prediction Using Multi-Objective Evolution Algorithm. bioRxiv 2023.04.21.537776

Ahmed, M. H., Ghatge, M. S., & Safo, M. K. (2020). Hemoglobin: Structure, Function and Allostery. Sub-cellular biochemistry, 94, 345–382.

Bryant, P., Pozzati, G., Zhu, W. et al. Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search. Nat Commun 13, 6028 (2022).

Trinkle-Mulcahy, L., Boulon, S., Lam, Y. W., Urcia, R., Boisvert, F.-M., Vandermoere, F., Morrice, N. A., Swift, S., Rothbauer, U., Leonhardt, H., & Lamond, A. (2008). Identifying specific protein interaction partners using quantitative mass spectrometry and Bead Proteomes. The Journal of Cell Biology, 183(2), 223–239.

Buel, G. R., & Walters, K. J. (2022). Can alphafold2 predict the impact of missense mutations on structure? Nature Structural & Molecular Biology, 29(1), 1–2.

Hegedűs, T., Geisler, M., Lukács, G. L., & Farkas, B. (2022). Ins and outs of AlphaFold2 transmembrane protein structure predictions. Cellular and molecular life sciences : CMLS, 79(1), 73.



How to Cite

Rajpal, S., & Plymire, D. (2023). Comparison Of 3D Structures Generated by AlphaFold2 to Experimental Structures In Oncogenic Proteins. Journal of Student Research, 12(4).



HS Research Articles