Towards Sustainable AI: Mitigating Carbon Impact Through Compact Models


  • Eddie Zhang Troy High School
  • Jixiu Chang
  • Ashley Yang



Green AI, Environmental Impact, Energy Consumption


As AI technology continues to advance rapidly, it is essential to address the environmental concerns associated with the increasing carbon emissions and their contribution to global warming. The expanding AI industry requires significant computing power, making it a potential major contributor to carbon emissions in the future. Unfortunately, our current understanding of AI models is very limited. We conducted a comprehensive analysis involving 12 distinct AI models, encompassing object detection, translation, and text-to-image generation tasks. Our findings revealed that smaller AI models can achieve equal or even better results compared to larger models while offering a significant reduction of carbon emissions. This highlights the potential for environmental savings by prioritizing smaller models. These findings underscore the importance of considering the environmental impact of AI models and encourage the adoption of strategies such as using smaller models and optimizing workload schedules to reduce carbon emissions. By prioritizing sustainability in AI development and deployment, we can work towards a greener and more sustainable future.


Download data is not yet available.

References or Bibliography

Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green AI. Communications of the ACM, 63(12), 54-63.

Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A. S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., Luccioni, A., Maharaj, T., Sherwin, E. D., Mukkavilli, S. K., Kording, K. P., Gomes, C., Ng, A. Y., Hassabis, D., Platt, J. C., Creutzig, F., Chayes, J., & Bengio, Y.(2022). Tackling Climate Change with Machine Learning. ACM Computing Surveys, 55(2), Article 42, 1-96.

Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial Intelligence for Sustainability: Challenges, Opportunities, and a Research Agenda. International Journal of Information Management, 53.

Mehlin, V., Schacht, S., & Lanquillon, C. (2023). Towards energy-efficient Deep Learning: An overview of energy-efficient approaches along the Deep Learning Lifecycle. arXiv preprint arXiv:2303.01980.

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J., ... Dai, J. (2020). Deformable DETR: Deformable Transformers for End-to-End Object Detection. ICLR 2021 Oral, September 2020.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S. (2020). End-to-End Object Detection with Transformers. ECCV 2020. Lecture Notes in Computer Science, vol 12346. Springer, Cham.

Minderer, M., Gritsenko, A., Stone, A., Neumann, M., Weissenborn, D., Dosovitskiy, A., ... Houlsby, N. (2022). Simple Open-Vocabulary Object Detection with Vision Transformers. ECCV 2022, 728-755.

Dhar, P. (2020). The Carbon Impact of Artificial Intelligence. Nature Journal, Nat Mach Intell, 2, 423-425.

Yigitcanlar, T., Mehmood, R., & Corchado, J. M. (2021). Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable Technology for Smart Cities and Futures. MDPI Sustainability, 13(16).

Bergstra, J. S., Bardenet, R., Bengio, Y., & Kegl, B. (2011). Algorithms for Hyper-parameter Optimization. In Proc. of NeurIPS.

Dettmers, T., & Zettlemoyer, L. (2019). Sparse Networks from Scratch: Faster Training without Losing Performance? arXiv preprint arXiv:1907.04840.

Stable diffusion samplers. (2023, January 8). NightCafe.

Stable Diffusion 2.1. (2023, July 4). Hugging Face.

Abyssorangemix2 - sfw/soft nsfw. (2023, March 28). Civitai.

Pastel Mix Stylized Anime Model. (2023, May 24). CivitAi.

How many frames per second can the human eye see? (2021, March 2). CaseGuard.

Mukulsomukesh M. J. (2022, April 22). How to draw bounding boxes on an image in PyTorch? GeeksforGeeks.

CodeCarbon. (2021). CodeCarbon.

Security Camera Statistics: 2022 Market Share Analysis & Industry Trends.(2023, July 15). OpticsMag.

AUTOMATIC1111. (2023, July 19). Stable-diffusion-webui. GitHub.

Ng, N., Yee, K., Baevski, A., Ott, M., Auli, M., Edunov, S. (2019). Facebook FAIR’s WMT19 News Translation Task Submission. arXiv preprint arXiv:1907.06616.

Kasai, J., Pappas, N., Peng, H., Cross, J., & Smith, N. A. (2019). Deep Encoder, Shallow Decoder: Reevaluating Non-Autoregressive Machine Translation. arXiv preprint arXiv:2006.10369.

Lewis, P., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., & Stoyanov, V. (2020). Leveraging Pre-trained Checkpoints for Sequence Generation Tasks.

Transactions of the Association for Computational Linguistics, 8, 264-280.

Evaluate custom models. (2023, July 19). Google Cloud.

Hugging Face models. (2016). Hugging Face.



How to Cite

Zhang, E., Chang, J., & Yang, A. (2023). Towards Sustainable AI: Mitigating Carbon Impact Through Compact Models. Journal of Student Research, 12(4).



HS Research Articles