The Past, Present, and Future of Gene Therapy

Authors

  • Jeongwoo Choe Cupertino High School
  • Kenji Mitchell Cupertino High School

DOI:

https://doi.org/10.47611/jsrhs.v12i3.4849

Keywords:

Gene Engineering, Gene Therapy, CRISPR-Cas9, CAR-T Cell, Adeno-associated Virus

Abstract

Since 2010, gene therapy has rapidly gained interest as a possible method to cure previously untouchable and incurable diseases. The idea of tackling the disease at its genetic core to prevent the malignance from manifesting in the first place seemed unrealistic at first, but decades of research have started to bear fruit and these untouchable diseases suddenly seem mortal. CRISPR-Cas9, Chimeric Antigen Receptor (CAR) T-cell therapy, and adeno-associated virus (AAV) therapy utilize different gene engineering techniques to nullify previously incurable diseases. This paper serves as a comprehensive review paper which analyzes the mechanism, advantages, and disadvantages of these three gene therapy techniques. This paper states the genetic scissor mechanism of the CRISPR-Cas9 complex, and its difference from its predecessors, the artificial tinkering of the CAR t-cell therapy method and its subsequent utilization of the host’s immune system, and finally the transduction potential of the AAV gene therapy.  Finally, this paper states the current status and clinical application of the three gene therapy techniques, including their medication terminology and target diseases, and helps elucidate the future and potential of these three gene therapy techniques.

Downloads

Download data is not yet available.

References or Bibliography

Aiuti, A., Roncarolo, M. G., & Naldini, L. (2017). Gene therapy for ada‐scid, the first marketing approval of an ex vivo gene therapy in Europe: Paving the road for the next generation of Advanced Therapy Medicinal Products. EMBO Molecular Medicine, 9(6), 737–740. https://doi.org/10.15252/emmm.201707573

AlDallal, S. (2020). Yescarta: A New Era for Non-Hodgkin Lymphoma Patients. Cureus. https://doi.org/10.7759/cureus.11504

Allan, K. M., Farrow, N., Donnelley, M., Jaffe, A., & Waters, S. A. (2021). Treatment of cystic fibrosis: From gene- to cell-based therapies. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.639475

Atchison, R. W., Casto, B. C., & Hammon, W. McD. (1965). Adenovirus-associated defective virus particles. Science, 149(3685), 754–756. https://doi.org/10.1126/science.149.3685.754

Büning, H. (2013). Gene therapy enters the Pharma Market: The short story of a long journey. EMBO Molecular Medicine, 5(1), 1–3. https://doi.org/10.1002/emmm.201202291

Center for Biologics Evaluation and Research (CBER). (2018). What is gene therapy? U.S. Food and Drug Administration. Retrieved April 13, 2023, from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/what-gene-therapy#footnote1

Center for Biologics Evaluation and Research (CBER). (2022) Kymriah (tisagenlecleucel). U.S. Food and Drug Administration. Retrieved April 13, 2023, from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel

Cheung, A. K., Hoggan, M. D., Hauswirth, W. W., & Berns, K. I. (1980). Integration of the adeno-associated virus genome into cellular DNA in latently infected human Detroit 6 cells. Journal of virology, 33(2), 739–748. https://doi.org/10.1128/JVI.33.2.739-748.1980

Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A. J., & Voytas, D. F. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186(2), 757–761. https://doi.org/10.1534/genetics.110.120717

Cohen, S. N., Chang, A. C., Boyer, H. W., & Helling, R. B. (1973). Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Sciences, 70(11), 3240–3244. https://doi.org/10.1073/pnas.70.11.3240

Colella, P., Ronzitti, G., & Mingozzi, F. (2018). Emerging issues in AAV-mediated in vivo gene therapy. Molecular Therapy - Methods & Clinical Development, 8, 87–104. https://doi.org/10.1016/j.omtm.2017.11.007

Cooney, A., McCray, P., & Sinn, P. (2018). Cystic fibrosis gene therapy: Looking back, looking forward. Genes, 9(11), 538. https://doi.org/10.3390/genes9110538

Cyranoski, D. (2016). CRISPR gene-editing tested in a person for the first time. Nature 539, 479. https://doi.org/10.1038/nature.2016.20988

Deverman, B. E., Ravina, B. M., Bankiewicz, K. S., Paul, S. M., & Sah, D. W. Y. (2018). Gene therapy for neurological disorders: progress and prospects. Nature reviews. Drug discovery, 17(9), 641–659. https://doi.org/10.1038/nrd.2018.110

Dunbar, C. E., High, K. A., Joung, J. K., Kohn, D. B., Ozawa, K., & Sadelain, M. (2018). Gene therapy comes of age. Science (New York, N.Y.), 359(6372), eaan4672. https://doi.org/10.1126/science.aan4672

FDA. (2018). What is gene therapy?. U.S. Food and Drug Administration. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/what-gene-therapy

Hastie, E., & Samulski, R. J. (2015). Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success--a personal perspective. Human gene therapy, 26(5), 257–265. https://doi.org/10.1089/hum.2015.025

Hoggan, M. D., Blacklow, N. R., & Rowe, W. P. (1966). Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proceedings of the National Academy of Sciences of the United States of America, 55(6), 1467–1474. https://doi.org/10.1073/pnas.55.6.1467

Ishikawa, K., Weber, T., & Hajjar, R. J. (2018). Human Cardiac Gene Therapy. Circulation research, 123(5), 601–613. https://doi.org/10.1161/CIRCRESAHA.118.311587

Khan, S. H. (2019). Genome-editing technologies: Concept, Pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Molecular Therapy - Nucleic Acids, 16, 326–334. https://doi.org/10.1016/j.omtn.2019.02.027

Kotterman, M. A., Chalberg, T. W., & Schaffer, D. V. (2015). Viral vectors for gene therapy: Translational and clinical outlook. Annual Review of Biomedical Engineering, 17(1), 63–89. https://doi.org/10.1146/annurev-bioeng-071813-104938

Klug, A. (2010). The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annual Review of Biochemistry, 79(1), 213–231. https://doi.org/10.1146/annurev-biochem-010909-095056

Kite Pharma. (2020). Yescarta® (Axicabtagene Ciloleucel) demonstrates high rates of response in relapsed or refractory indolent Non-Hodgkin lymphoma. Kite Pharma, Changing the Way Cancer is Treated. https://www.kitepharma.com/news/press-releases/2020/5/yescarta-axicabtagene-ciloleucel-demonstrates-high-rates-of-response-in-relapsed-or-refractory-indolent-nonhodgkin-lymphoma

Kim, Y. G., Cha, J., & Chandrasegaran, S. (1996). Hybrid restriction enzymes: Zinc finger fusions to fok I cleavage domain. Proceedings of the National Academy of Sciences, 93(3), 1156–1160. https://doi.org/10.1073/pnas.93.3.1156

Li, C., & Samulski, R. J. (2020). Engineering adeno-associated virus vectors for gene therapy. Nature reviews. Genetics, 21(4), 255–272. https://doi.org/10.1038/s41576-019-0205-4

Li, T., & Yang, B. (2013). Tal effector nuclease (talen) engineering. Methods in Molecular Biology, 63–72. https://doi.org/10.1007/978-1-62703-293-3_5

Li, T., Yang, Y., Qi, H., Cui, W., Zhang, L., Fu, X., He, X., Liu, M., Li, P.-feng, & Yu, T. (2023). CRISPR/Cas9 Therapeutics: Progress and Prospects. Signal Transduction and Targeted Therapy, 8(1). https://doi.org/10.1038/s41392-023-01309-7

Locke, F. L., Neelapu, S. S., Bartlett, N. L., Lekakis, L. J., Miklos, D., Jacobson, C. A., Braunschweig, I., Oluwole, O., Siddiqi, T., Lin, Y., Timmerman, J., Friedberg, J. W., Bot, A., Rossi, J., Navale, L., Jiang, Y., Aycock, J., Elias, M., Wiezorek, J., & Go, W. Y. (2017). Abstract CT019: Primary results from Zuma-1: A pivotal trial of Axicabtagene Ciloleucel (axicel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (NHL). Cancer Research, 77(13_Supplement). https://doi.org/10.1158/1538-7445.am2017-ct019

Lu, Y., Xue, J., Deng, T., Zhou, X., Yu, K., Deng, L., Huang, M., Yi, X., Liang, M., Wang, Y., Shen, H., Tong, R., Wang, W., Li, L., Song, J., Li, J., Su, X., Ding, Z., Gong, Y., Zhu, J., … Mok, T. (2020). Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nature medicine, 26(5), 732–740. https://doi.org/10.1038/s41591-020-0840-5

Lulla, P. D., Hill, L. C., Ramos, C. A., & Heslop, H. E. (2018). The use of chimeric antigen receptor T cells in patients with non-Hodgkin lymphoma. Clinical advances in hematology & oncology : H&O, 16(5), 375–386.

Lundstrom, K. (2018). Viral Vectors in Gene Therapy. Diseases, 6(2), 42. https://doi.org/10.3390/diseases6020042

Mali, P., Esvelt, K. M., & Church, G. M. (2013). Cas9 as a versatile tool for engineering biology. Nature Methods, 10(10), 957–963. doi:10.1038/nmeth.2649

Malzahn, A., Zhang, Y., & Qi, Y. (2019). CRISPR-Act2.0: An Improved Multiplexed System for Plant Transcriptional Activation. Methods in molecular biology (Clifton, N.J.), 1917, 83–93. https://doi.org/10.1007/978-1-4939-8991-1_7

Mak, A. N.-S., Bradley, P., Bogdanove, A. J., & Stoddard, B. L. (2013). Tal effectors: Function, structure, engineering and applications. Current Opinion in Structural Biology, 23(1), 93–99. https://doi.org/10.1016/j.sbi.2012.11.001

Maude, S. L., Laetsch, T. W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H., Bader, P., Verneris, M. R., Stefanski, H. E., Myers, G. D., Qayed, M., De Moerloose, B., Hiramatsu, H., Schlis, K., Davis, K. L., Martin, P. L., Nemecek, E. R., Yanik, G. A., Peters, C., Baruchel, A., … Grupp, S. A. (2018). Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. The New England journal of medicine, 378(5), 439–448. https://doi.org/10.1056/NEJMoa1709866

Moore, N. A., Morral, N., Ciulla, T. A., & Bracha, P. (2017). Gene therapy for inherited retinal and optic nerve degenerations. Expert Opinion on Biological Therapy, 18(1), 37–49. https://doi.org/10.1080/14712598.2018.1389886

National Cancer Institute (NCI). (2023). Car T cells: Engineering immune cells to treat cancer. National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/research/car-t-cells

Neelapu, S. S., Dickinson, M., Munoz, J., Ulrickson, M. L., Thieblemont, C., Oluwole, O. O., Herrera, A. F., Ujjani, C. S., Lin, Y., Riedell, P. A., Kekre, N., de Vos, S., Lui, C., Milletti, F., Dong, J., Xu, H., & Chavez, J. C. (2022). Axicabtagene CILOLEUCEL as first-line therapy in high-risk large B-cell lymphoma: The phase 2 zuma-12 trial. Nature Medicine, 28(4), 735–742. https://doi.org/10.1038/s41591-022-01731-4

Normile, D. (2018). CRISPR bombshell: Chinese researcher claims to have created gene-edited twins. https://www.science.org/content/article/crispr-bombshell-chinese-researcher-claims-have-created-gene-edited-twins

Ogbonmide, T., Rathore, R., Rangrej, S. B., Hutchinson, S., Lewis, M., Ojilere, S., Carvalho, V., & Kelly, I. (2023). Gene Therapy for Spinal Muscular Atrophy (SMA): A Review of Current Challenges and Safety Considerations for Onasemnogene Abeparvovec (Zolgensma). Cureus, 15(3), e36197. https://doi.org/10.7759/cureus.36197

OHSU. (2023). CAR T-Cell Therapy for Cancer. OHSU. https://www.ohsu.edu/knight-cancer-institute/car-t-cell-therapy-cancer

Pan, C., Wu, X., Markel, K., Malzahn, A. A., Kundagrami, N., Sretenovic, S., Zhang, Y., Cheng, Y., Shih, P. M., & Qi, Y. (2021). CRISPR–act3.0 for highly efficient multiplexed gene activation in plants. Nature Plants, 7(7), 942–953. https://doi.org/10.1038/s41477-021-00953-7

Razin, S. V., Borunova, V. V., Maksimenko, O. G., & Kantidze, O. L. (2012). Cys2His2 zinc finger protein family: Classification, functions, and major members. Biochemistry (Moscow), 77(3), 217–226. https://doi.org/10.1134/s0006297912030017

Rose, J. A., Berns, K. I., Hoggan, M. D., & Koczot, F. J. (1969). Evidence for a single-stranded adenovirus-associated virus genome: formation of a DNA density hybrid on release of viral DNA. Proceedings of the National Academy of Sciences of the United States of America, 64(3), 863–869. https://doi.org/10.1073/pnas.64.3.863

Sack, B. K., & Herzog, R. W. (2009). Evading the immune response upon in vivo gene therapy with viral vectors. Current opinion in molecular therapeutics, 11(5), 493–503.

Sadelain, M., Brentjens, R., & Rivière, I. (2013). The basic principles of chimeric antigen receptor design. Cancer Discovery, 3(4), 388–398. https://doi.org/10.1158/2159-8290.cd-12-0548

Samulski, R. J., Chang, L. S., & Shenk, T. (1989). Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. Journal of virology, 63(9), 3822–3828. https://doi.org/10.1128/JVI.63.9.3822-3828.1989

Sterner, R. C., & Sterner, R. M. (2021). Car-T cell therapy: Current limitations and potential strategies. Blood Cancer Journal, 11(4). https://doi.org/10.1038/s41408-021-00459-7

Stieger, K., Lheriteau, E., Moullier, P., & Rolling, F. (2009). Aav-mediated gene therapy for retinal disorders in large animal models. ILAR Journal, 50(2), 206–224. https://doi.org/10.1093/ilar.50.2.206

Uddin, F., Rudin, C. M., & Sen, T. (2020). CRISPR gene therapy: Applications, limitations, and implications for the future. Frontiers in Oncology, 10. https://doi.org/10.3389/fonc.2020.01387

Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 11(9), 636–646. https://doi.org/10.1038/nrg2842

Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F., & Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910–918. https://doi.org/10.1016/j.cell.2013.04.025

Wu, Z., Asokan, A., & Samulski, R. J. (2006). Adeno-associated virus serotypes: vector toolkit for human gene therapy. Molecular therapy : the journal of the American Society of Gene Therapy, 14(3), 316–327. https://doi.org/10.1016/j.ymthe.2006.05.009

Yourgenome (2017, August 23). What is genome editing? @yourgenome · Science website. Retrieved April 13, 2023, from https://www.yourgenome.org/facts/what-is-genome-editing/

Zhang, X., Lu, L., Song, Q., Yang, Q., Li, D., Sun, J., Li, T., & Cong, P. (2013). DomHR: Accurately identifying domain boundaries in proteins using a hinge region strategy. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0060559

Published

08-31-2023

How to Cite

Choe, J., & Mitchell, K. (2023). The Past, Present, and Future of Gene Therapy. Journal of Student Research, 12(3). https://doi.org/10.47611/jsrhs.v12i3.4849

Issue

Section

HS Review Articles