The Aging of Cells: Cellular Senescence and Implications for Age-Related Diseases

Authors

  • Andrew Kim Los Alamitos High School
  • Jounghyun Yoo California Institute of Technology

DOI:

https://doi.org/10.47611/jsrhs.v12i3.4847

Keywords:

Aging, Cellular Senescence, Senotherapeutics, Senescent cells

Abstract

Cellular senescence, the aging of cells, is a multifaceted process characterized by the progressive accumulation of molecular and cellular changes. Senescent cells, marked by their proinflammatory secretome called the senescence-associated secretory phenotype (SASP), contribute to tissue dysfunction and promote aging processes. In this review, we provide a comprehensive overview of the current understanding of cellular senescence, with a particular focus on the underlying mechanisms driving cell aging and the strategies of targeting senescent cells to extend healthspan and alleviate age-related diseases. We discuss how factors such as telomere shortening, DNA damage, oxidative stress, and oncogene activation contribute to cellular aging and the development of age-related diseases. Furthermore, we explore the potential senotherapeutic interventions, including senolytic and senomorphic therapies, that target senescent cells. Lastly, we highlight the opportunities and challenges of senotherapeutics in the context of aging and aging-associated diseases, underscoring their potential implications for human health and longevity.

Downloads

Download data is not yet available.

References or Bibliography

Amor, C., Feucht, J., Leibold, J., Ho, Y.-J., Zhu, C. Y., Alonso-Curbelo, D., . . . Lowe, S. W. (2020). Senolytic CAR T cells reverse senescence-associated pathologies. Nature, 583(7814), 127-132. doi:10.1038/s41586-020-2403-9

Bandeen-Roche, K., Xue, Q. L., Ferrucci, L., Walston, J., Guralnik, J. M., Chaves, P., . . . Fried, L. P. (2006). Phenotype of frailty: Characterization in the women's health and aging studies. J. Gerontol. A Biol. Sci. Med. Sci., 61(3), 262-266. doi:10.1093/gerona/61.3.262

Bhat, R., Crowe, E. P., Bitto, A., Moh, M., Katsetos, C. D., Garcia, F. U., . . . Torres, C. (2012). Astrocyte senescence as a component of Alzheimer's disease. Plos One, 7(9), e45069. doi:10.1371/journal.pone.0045069

Burton, D. G. A., & Stolzing, A. (2018). Cellular senescence: Immunosurveillance and future immunotherapy. Ageing Res. Rev., 43, 17-25. doi:10.1016/j.arr.2018.02.001

Cai, Y., Zhou, H., Zhu, Y., Sun, Q., Ji, Y., Xue, A., . . . Deng, H. (2020). Elimination of senescent cells by beta-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res., 30(7), 574-589. doi:10.1038/s41422-020-0314-9

Chaib, S., Tchkonia, T., & Kirkland, J. L. (2022). Cellular senescence and senolytics: the path to the clinic. Nat. Med., 28(8), 1556-1568. doi:10.1038/s41591-022-01923-y

Correia-Melo, C., Marques, F. D. M., Anderson, R., Hewitt, G., Hewitt, R., Cole, J., . . . Passos, J. F. (2016). Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J., 35(7), 724-742. doi:DOI 10.15252/embj.201592862

di Fagagna, F. D., Reaper, P. M., Clay-Farrace, L., Fiegler, H., Carr, P., von Zglinicki, T., . . . Jackson, S. P. (2003). A DNA damage checkpoint response in telomere-initiated senescence. Nature, 426(6963), 194-198. doi:10.1038/nature02118

Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C., . . . di Fagagna, F. D. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature, 444(7119), 638-642. doi:10.1038/nature05327

Di Micco, R., Krizhanovsky, V., Baker, D., & di Fagagna, F. D. (2021). Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol., 22(2), 75-95. doi:10.1038/s41580-020-00314-w

Ekpenyong-Akiba, A. E., Canfarotta, F., Bashar, A. H., Poblocka, M., Casulleras, M., Castilla-Vallmanya, L., . . . Macip, S. (2019). Detecting and targeting senescent cells using molecularly imprinted nanoparticles. Nanoscale Horiz., 4(3), 757-768. doi:10.1039/c8nh00473k

Ferrucci, L., & Fabbri, E. (2018). Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol., 15(9), 505-522. doi:10.1038/s41569-018-0064-2

Fumagalli, M., Rossiello, F., Mondello, C., & di Fagagna, F. D. (2014). Stable cellular senescence is associated with persistent DDR activation. Plos One, 9(10), e110969. doi:10.1371/journal.pone.0110969

Gonzalez-Gualda, E., Paez-Ribes, M., Lozano-Torres, B., Macias, D., Wilson, I. I. I., Gonzalez-Lopez, C., . . . Munoz-Espin, D. (2020). Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell, 19(4), e13142. doi:10.1111/acel.13142

Guerrero, A., Guiho, R., Herranz, N., Uren, A., Withers, D. J., Martinez-Barbera, J. P., . . . Gil, J. (2020). Galactose-modified duocarmycin prodrugs as senolytics. Aging Cell, 19(4), e13133. doi:10.1111/acel.13133

Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Exp. Cell Res., 25, 585-621. doi:10.1016/0014-4827(61)90192-6

Huang, W., Hickson, L. J., Eirin, A., Kirkland, J. L., & Lerman, L. O. (2022). Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol., 18(10), 611-627. doi:10.1038/s41581-022-00601-z

Khosla, S., Farr, J. N., & Kirkland, J. L. (2018). Inhibiting cellular senescence: A new therapeutic paradigm for age-related osteoporosis. J. Clin. Endocrinol. Metab., 103(4), 1282-1290. doi:10.1210/jc.2017-02694

Kim, K. M., Noh, J. H., Bodogai, M., Martindale, J. L., Yang, X., Indig, F. E., . . . Gorospe, M. (2017). Identification of senescent cell surface targetable protein DPP4. Genes Dev., 31(15), 1529-1534. doi:10.1101/gad.302570.117

Morsli, S., Doherty, G. J., & Munoz-Espin, D. (2022). Activatable senoprobes and senolytics: Novel strategies to detect and target senescent cells. Mech. Ageing Dev., 202, 111618. doi:10.1016/j.mad.2021.111618

Munoz-Espin, D., Rovira, M., Galiana, I., Gimenez, C., Lozano-Torres, B., Paez-Ribes, M., . . . Serrano, M. (2018). A versatile drug delivery system targeting senescent cells. EMBO Mol. Med., 10(9), e9355. doi:10.15252/emmm.201809355

Neff, F., Flores-Dominguez, D., Ryan, D. R., Horsch, M., Schroder, S., Adler, T., . . . Ehninger, D. (2013). Rapamycin extends murine lifespan but has limited effects on aging. J. Clin. Invest., 123(8), 3272-3291. doi:10.1172/Jci67674

Ogrunc, M., Di Micco, R., Liontos, M., Bombardelli, L., Mione, M., Fumagalli, M., . . . d'Adda di Fagagna, F. (2014). Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ., 21(6), 998-1012. doi:10.1038/cdd.2014.16

Prata, L., Ovsyannikova, I. G., Tchkonia, T., & Kirkland, J. L. (2018). Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin. Immunol., 40, 101275. doi:10.1016/j.smim.2019.04.003

Sagiv, A., & Krizhanovsky, V. (2013). Immunosurveillance of senescent cells: the bright side of the senescence program. Biogerontology, 14(6), 617-628. doi:10.1007/s10522-013-9473-0

Schafer, M. J., Haak, A. J., Tschumperlin, D. J., & LeBrasseur, N. K. (2018). Targeting senescent cells in fibrosis: Pathology, paradox, and practical considerations. Curr. Rheumatol. Rep., 20, 3. doi:10.1007/s11926-018-0712-x

Song, P., Zhao, Q., & Zou, M.-H. (2020). Targeting senescent cells to attenuate cardiovascular disease progression. Ageing Res. Rev., 60, 101072. doi:10.1016/j.arr.2020.101072

Suda, M., Shimizu, I., Katsuumi, G., Yoshida, Y., Hayashi, Y., Ikegami, R., . . . Minamino, T. (2021). Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat. Aging, 1(12), 1117-1126. doi:10.1038/s43587-021-00151-2

Tilstra, J. S., Robinson, A. R., Wang, J., Gregg, S. Q., Clauson, C. L., Reay, D. P., . . . Robbins, P. D. (2012). NF-kappaB inhibition delays DNA damage-induced senescence and aging in mice. J. Clin. Invest., 122(7), 2601-2612. doi:10.1172/JCI45785

Vizioli, M. G., Liu, T., Miller, K. N., Robertson, N. A., Gilroy, K., Lagnado, A. B., . . . Adams, P. D. (2020). Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev., 34(5-6), 428-445. doi:10.1101/gad.331272.119

Zhang, L., Pitcher, L. E., Prahalad, V., Niedernhofer, L. J., & Robbins, P. D. (2023). Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J., 290(5), 1362-1383. doi:10.1111/febs.16350

Zhang, L., Pitcher, L. E., Yousefzadeh, M. J., Niedernhofer, L. J., Robbins, P. D., & Zhu, Y. (2022). Cellular senescence: a key therapeutic target in aging and diseases. J. Clin. Invest., 132(15), e158450. doi:10.1172/JCI158450

Zhou, B., Wan, Y., Chen, R., Zhang, C., Li, X., Meng, F., . . . Zou, P. (2020). The emerging role of cellular senescence in renal diseases. J. Cell Mol. Med., 24(3), 2087-2097. doi:10.1111/jcmm.14952

Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H. S., Giorgadze, N., . . . Kirkland, J. L. (2015). The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14(4), 644-658. doi:10.1111/acel.12344

Published

08-31-2023

How to Cite

Kim, A., & Yoo, J. (2023). The Aging of Cells: Cellular Senescence and Implications for Age-Related Diseases. Journal of Student Research, 12(3). https://doi.org/10.47611/jsrhs.v12i3.4847

Issue

Section

HS Review Projects