Keeping up with the Immortal Jellyfish: Biological Immortality in Animals and Humans

Authors

  • Lily Nguyen Enochs High School
  • Saam Malekahmadi University of Southern California

DOI:

https://doi.org/10.47611/jsrhs.v12i3.4774

Keywords:

biological immortality, immortality, senescence, aging, lifespan, animals, aging in humans

Abstract

Biological immortality is the state in which organisms do not die of intrinsic aging or the natural breakdown of cells over time. Although biological immortality is not currently the reality in humans, as our rate of mortality increases as we age, interestingly enough, biological immortality has been observed throughout the animal kingdom in organisms including the Hydra flatworm, Turritopsis dohrnii jellyfish, lobsters, and tardigrades. To achieve the shared goal of biological immortality, however, the aforementioned organisms employ various different mechanisms ranging from controlling FoxO gene expression to reversibly halting metabolism. The following paper overviews this variety of mechanisms to evaluate the question: “Is it possible for humans to become biologically immortal?”

Downloads

Download data is not yet available.

Author Biography

Saam Malekahmadi, University of Southern California

Pursuing master's degree in public health and epidemiology-biostatistics at University of Southern California

References or Bibliography

Grevin, C. (2022, October 14). The Top 10 Fears in America 2022 - did your fears make the list?. The Voice of Wilkinson. https://blogs.chapman.edu/wilkinson/2022/10/14/the-top-10-fears-in-america-2022

Finch, C. (2009). Evolution of the human lifespan and diseases of aging: Roles of infection, inflammation, and nutrition. Proceedings of the National Academy of Sciences, 107(suppl_1), 1718–1724. https://doi.org/10.1073/pnas.0909606106

Centers for Disease Control and Prevention. (2023, February 7). FastStats - life expectancy. Centers for Disease Control and Prevention. https://www.cdc.gov/nchs/fastats/life-expectancy.html

Pyrkov, T. V., Avchaciov, K., Tarkhov, A. E., Menshikov, L. I., Gudkov, A. V., & Fedichev, P. O. (2021a). Longitudinal analysis of blood markers reveals progressive loss of resilience and predicts human lifespan limit. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-23014-1

Nunez, K. (2021, March 23). Why do we age, and can anything be done to stop or slow it?. Healthline. https://www.healthline.com/health/why-do-we-age

Osterloff, E. (2021, December 8). Are lobsters immortal?. Natural History Museum. https://www.nhm.ac.uk/discover/are-lobsters-immortal.html#:~:text=They%20found%20that%2C%20on%20average,had%20reached%2072%20years%20old.&text=Lobsters%20certainly%20do%20not%20live%20forever

Klapper, W., Kühne, K., Singh, K. K., Heidorn, K., Parwaresch, R., & Krupp, G. (1998). Longevity of lobsters is linked to ubiquitous telomerase expression. FEBS Letters, 439(1–2), 143–146. https://doi.org/10.1016/s0014-5793(98)01357-x

Berthold, E. (2021, May 24). The animals that can live forever. Curious. https://www.science.org.au/curious/earth-environment/animals-can-live-forever#:~:text=The%20’immortal’%20jellyfish%2C%20Turritopsis,stage%20of%20their%20life%20cycle

Kirkwood, T. (2010, September 1). Why can’t we live forever? Scientific American. https://www.scientificamerican.com/article/why-cant-we-live-forever/

Park, E. E. (2016, April 25). For DNA day: a simple mechanical explanation of aging and disease. Recharge Biomedical. https://www.rechargebiomedical.com/for-dna-day-a-simple-mechanical-explanation-of-aging-and-disease/

Nguyen, T. H., Tam, J., Wu, R. A., Greber, B. J., Toso, D., Nogales, E., & Collins, K. (2018). Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nature, 557(7704), 190–195. https://doi.org/10.1038/s41586-018-0062-x

Conger, K. (2015, January 22). Telomere extension turns back aging clock in cultured human cells, study finds. Stanford Medicine News Center. https://med.stanford.edu/news/all-news/2015/01/telomere-extension-turns-back-aging-clock-in-cultured-cells.html

Schaible, R., Scheuerlein, A., Dańko, M. J., Gampe, J., Martínez, D. E., & Vaupel, J. W. (2015). Constant mortality and fertility over age in Hydra. Proceedings of the National Academy of Sciences, 112(51), 15701–15706. https://doi.org/10.1073/pnas.1521002112

Pester, P. (2021, September 29). Will humans ever be immortal?. LiveScience. https://www.livescience.com/could-humans-be-immortal

Du, S., & Zheng, H. (2021a). Role of Foxo transcription factors in aging and age-related metabolic and neurodegenerative diseases. Cell & Bioscience, 11(1). https://doi.org/10.1186/s13578-021-00700-7

Boehm, A.-M., Khalturin, K., Anton-Erxleben, F., Hemmrich, G., Klostermeier, U. C., Lopez-Quintero, J. A., Oberg, H.-H., Puchert, M., Rosenstiel, P., Wittlieb, J., & Bosch, T. C. (2012a). Foxo is a critical regulator of stem cell maintenance in immortal Hydra. Proceedings of the National Academy of Sciences, 109(48), 19697–19702. https://doi.org/10.1073/pnas.1209714109

Nebel, A., & Bosch, T. C. (2012). Evolution of human longevity: Lessons from hydra. Aging, 4(11), 730–731. https://doi.org/10.18632/aging.100510

Møbjerg, N., & Neves, R. C. (2021). New insights into survival strategies of Tardigrades. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 254, 110890. https://doi.org/10.1016/j.cbpa.2020.110890

National Geographic. (n.d.). Tardigrade. Animals. https://www.nationalgeographic.com/animals/invertebrates/facts/tardigrades-water-bears?loggedin=true&rnd=1684734651043

Zell, M. (2008, October 11). Tiny Animals Survive Exposure to space. https://www.esa.int/. https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Research/Tiny_animals_survive_exposure_to_space

Sloan, D., Alves Batista, R., & Loeb, A. (2017). The resilience of life to astrophysical events. Scientific Reports, 7(1) https://doi.org/10.1038/s41598-017-05796-x

Metabolism: What it is, how it works and disorders. Cleveland Clinic. (2021). https://my.clevelandclinic.org/health/body/21893-metabolism

Schnebly, R. A. (2022, April 11). Cells, frozen in time. Ask A Biologist. https://askabiologist.asu.edu/embryo-tales/frozen-cells#:~:text=If%20ice%20forms%20inside%20a,protect%20it%2C%20the%20cell%20dies

Nguyen, K., KC, S., Gonzalez, T., Tapia, H., & Boothby, T. C. (2022). Trehalose and tardigrade CAHS proteins work synergistically to promote desiccation tolerance. Communications Biology, 5(1). https://doi.org/10.1038/s42003-022-04015-2

Elbein, A. D., Pan, Y. T., Pastuszak, I., & Carroll, D. (2003). New insights on Trehalose: A multifunctional molecule. Glycobiology, 13(4), 17R-27R. https://doi.org/10.1093/glycob/cwg047

Marshall, M. (2021, March 20). Tardigrades: Nature’s great survivors. The Guardian. https://www.theguardian.com/science/2021/mar/20/tardigrades-natures-great-survivors

Boothby, T. C., Tapia, H., Brozena, A. H., Piszkiewicz, S., Smith, A. E., Giovannini, I., Rebecchi, L., Pielak, G. J., Koshland, D., & Goldstein, B. (2017). Tardigrades use intrinsically disordered proteins to survive desiccation. Molecular Cell, 65(6), 975–984. https://doi.org/10.1016/j.molcel.2017.02.018

Kim, S. X., Çamdere, G., Hu, X., Koshland, D., & Tapia, H. (2018). Synergy between the small intrinsically disordered protein hsp12 and trehalose sustain viability after severe desiccation. eLife, 7. https://doi.org/10.7554/elife.38337

Chavez, C., Cruz-Becerra, G., Fei, J., Kassavetis, G. A., & Kadonaga, J. T. (2019). The tardigrade damage suppressor protein binds to nucleosomes and protects DNA from hydroxyl radicals. eLife, 8. https://doi.org/10.7554/elife.47682

Osborne, M. (2022, September 6). “immortal jellyfish” could spur discoveries about human agin. Smithsonian.com. https://www.smithsonianmag.com/smart-news/immortal-jellyfish-could-spur-discoveries-about-human-aging-180980702/

Boero, F. (2016). Everlasting life: The “immortal” jellyfish. Royal Society of Biology. https://thebiologist.rsb.org.uk/biologist-features/everlasting-life-the-immortal-jellyfish

Pascual-Torner, M., Carrero, D., Pérez-Silva, J. G., Álvarez-Puente, D., Roiz-Valle, D., Bretones, G., Rodríguez, D., Maeso, D., Mateo-González, E., Español, Y., Mariño, G., Acuña, J. L., Quesada, V., & López-Otín, C. (2022). Comparative genomics of mortal and Immortal Cnidarians unveils novel keys behind rejuvenation. Proceedings of the National Academy of Sciences, 119(36). https://doi.org/10.1073/pnas.2118763119

Yuan, X., Larsson, C., & Xu, D. (2019). Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: Old actors and new players. Oncogene, 38(34), 6172–6183. https://doi.org/10.1038/s41388-019-0872-9

Published

08-31-2023

How to Cite

Nguyen, L., & Malekahmadi, S. (2023). Keeping up with the Immortal Jellyfish: Biological Immortality in Animals and Humans. Journal of Student Research, 12(3). https://doi.org/10.47611/jsrhs.v12i3.4774

Issue

Section

HS Review Articles