Extension of the magic-angle system in twisted bilayer-graphene by adjusting parameter values

Authors

  • Anirudh Kannan Saint Francis High School
  • Chihiro Ikezi Saint Francis High School

DOI:

https://doi.org/10.47611/jsrhs.v12i1.4361

Keywords:

Quantum, Graphene, Twisted, Bilayer, Hopping, Materials, Simulation

Abstract

Twisted-bilayer graphene (TBG) has attracted significant attention in the world of condensed matter physics in the past few years owing to its unique properties. Consisting of two sheets of graphene, when TBG is rotated by a certain magic angle, it can transition into a remarkable superconducting state. Using the low-energy continuum Hamiltonian model developed by Bistritzer and MacDonald, along with theory on the relationship between tunneling amplitudes and magic angle1, we change parameters of the model in order to analyze the effect such changes have on the band structure of the overall system. For any twist angle, inputting corresponding amplitude values yields far flatter bands than those yielded by inputting standard amplitude values. Specifically, those models with twist angle and amplitudes lower than those of the conventional model possess flatter bands than the absolute flattest bands hitherto observed.

Downloads

Download data is not yet available.

Author Biography

Chihiro Ikezi, Saint Francis High School

Physics Teacher

References or Bibliography

E. Y. Andrei and A. H. MacDonald, “Graphene bilayers with a twist,” Nature Materials, vol. 19, no. 12, pp. 1265–1275, Nov. 2020. doi: 10.1038/s41563-020-00840-0. [Online]. Available: https://doi.org/10.1038%2Fs41563-020-00840-0.

G. Yang, L. Li, W. B. Lee, and M. C. Ng, “Structure of graphene and its disorders: A review,” Science and Technology of Advanced Materials, vol. 19, no. 1, pp. 613–648, 2018, PMID: 30181789. doi: 10.1080/14686996.2018.1494493. eprint: https://doi.org/10. 1080/14686996.2018.1494493. [Online]. Available: https://doi.org/10.1080/14686996. 2018.1494493.

A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Reviews of Modern Physics, vol. 81, no. 1, pp. 109–162, Jan. 2009. doi: 10.1103/revmodphys.81.109. [Online]. Available: https://doi.org/10.1103% 2Frevmodphys.81.109.

A. Rozhkov, G. Giavaras, Y. P. Bliokh, V. Freilikher, and F. Nori, “Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport,” Physics Reports, vol. 503, no. 2-3, pp. 77–114, Jun. 2011. doi: 10.1016/j.physrep. 2011.02.002. [Online]. Available: https://doi.org/10.1016%2Fj.physrep.2011.02.002.

Z. Sun and Y. H. Hu, “How magical is magic-angle graphene?” Matter, vol. 2, no. 5, pp. 1106– 1114, 2020, issn: 2590-2385. doi: https://doi.org/10.1016/j.matt.2020.03.010. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2590238520301235.

A. Nimbalkar and H. Kim, “Opportunities and challenges in twisted bilayer graphene: A review,” Nano-Micro Letters, vol. 12, no. 1, p. 126, Jun. 2020, issn: 2150-5551. doi: 10.

/s40820-020-00464-8. [Online]. Available: https://doi.org/10.1007/s40820-02000464-8.

D. R. Cooper, B. D’Anjou, N. Ghattamaneni, et al., “Experimental review of graphene,” ISRN Condensed Matter Physics, vol. 2012, p. 501686, Apr. 2012, issn: 2356-7872. doi: 10.5402/2012/501686. [Online]. Available: https://doi.org/10.5402/2012/501686.

R. Bistritzer and A. H. MacDonald, “Moiré bands in twisted double-layer graphene,” Proceedings of the National Academy of Sciences, vol. 108, no. 30, pp. 12233–12237, Jul. 2011. doi: 10.1073/pnas.1108174108. [Online]. Available: https://doi.org/10.1073%2Fpnas. 1108174108.

M. Yankowitz, S. Chen, H. Polshyn, et al., “Tuning superconductivity in twisted bilayer graphene,” Science, vol. 363, no. 6431, pp. 1059–1064, Mar. 2019. doi: 10.1126/science. aav1910. [Online]. Available: https://doi.org/10.1126%2Fscience.aav1910.

Y. Cao, V. Fatemi, A. Demir, et al., “Correlated insulator behaviour at half-filling in magicangle graphene superlattices,” Nature, vol. 556, no. 7699, pp. 80–84, Mar. 2018. doi: 10. 1038/nature26154. [Online]. Available: https://doi.org/10.1038%2Fnature26154.

A. L. Sharpe, E. J. Fox, A. W. Barnard, et al., “Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene,” Science, vol. 365, no. 6453, pp. 605–608, Aug. 2019. doi:

1126/science.aaw3780. [Online]. Available: https://doi.org/10.1126%2Fscience. aaw3780.

Y. Saito, J. Ge, K. Watanabe, T. Taniguchi, and A. F. Young, “Independent superconductors and correlated insulators in twisted bilayer graphene,” Nature Physics, vol. 16, no. 9, pp. 926– 930, Jun. 2020. doi: 10.1038/s41567-020-0928-3. [Online]. Available: https://doi.org/ 10.1038%2Fs41567-020-0928-3.

Y. Cao, V. Fatemi, S. Fang, et al., “Unconventional superconductivity in magic-angle graphene superlattices,” Nature, vol. 556, no. 7699, pp. 43–50, Mar. 2018. doi: 10.1038/nature26160. [Online]. Available: https://doi.org/10.1038%2Fnature26160.

B. L. Chittari, N. Leconte, S. Javvaji, and J. Jung, “Pressure induced compression of flatbands in twisted bilayer graphene,” Electronic Structure, vol. 1, no. 1, p. 015001, Nov. 2018. doi:

1088/2516-1075/aaead3. [Online]. Available: https://doi.org/10.1088%2F25161075%2Faaead3.

H. Tang, F. Du, S. Carr, C. DeVault, O. Mello, and E. Mazur, “Modeling the optical properties of twisted bilayer photonic crystals,” 2021. doi: 10.48550/ARXIV.2103.13600. [Online]. Available: https://arxiv.org/abs/2103.13600.

A. J. Wirth-Lima, M. G. Silva, and A. S. B. Sombra, “Comparisons of electrical and optical properties between graphene and silicene — a review,” Chinese Physics B, vol. 27, no. 2, p. 023201, Feb. 2018. doi: 10.1088/1674-1056/27/2/023201. [Online]. Available: https: //doi.org/10.1088/1674-1056/27/2/023201.

M. Vogl, M. Rodriguez-Vega, and G. A. Fiete, “Floquet engineering of interlayer couplings: Tuning the magic angle of twisted bilayer graphene at the exit of a waveguide,” Physical Review B, vol. 101, no. 24, Jun. 2020. doi: 10.1103/physrevb.101.241408. [Online]. Available: https://doi.org/10.1103%2Fphysrevb.101.241408.

S. Carr, S. Fang, Z. Zhu, and E. Kaxiras, “Exact continuum model for low-energy electronic states of twisted bilayer graphene,” Physical Review Research, vol. 1, no. 1, Aug. 2019. doi:

1103/physrevresearch.1.013001. [Online]. Available: https://doi.org/10.1103% 2Fphysrevresearch.1.013001.

N. N. T. Nam and M. Koshino, “Lattice relaxation and energy band modulation in twisted bilayer graphene,” Physical Review B, vol. 96, no. 7, Aug. 2017. doi: 10.1103/physrevb.96. 075311. [Online]. Available: https://doi.org/10.1103%2Fphysrevb.96.075311.

J. H. Wilson, Y. Fu, S. Das Sarma, and J. H. Pixley, “Disorder in twisted bilayer graphene,” Phys. Rev. Research, vol. 2, p. 023325, 2 Jun. 2020. doi: 10.1103/PhysRevResearch.2. 023325. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevResearch.2. 023325.

Published

02-28-2023

How to Cite

Kannan, A., & Ikezi, C. (2023). Extension of the magic-angle system in twisted bilayer-graphene by adjusting parameter values. Journal of Student Research, 12(1). https://doi.org/10.47611/jsrhs.v12i1.4361

Issue

Section

HS Research Articles