Transgenerational development of food allergies and allergic rhinitis


  • Samhitha Thatavarthy Holliston High School
  • Kelsey Fryer Stanford University



allergies, allergic rhinitis, T cells, Sulfur dioxide, CD4 T, pollutants, food proteins


Both environmental and genetic factors play a role in allergies. Allergies are influenced by genes and how they control immune cell function. Several studies have examined the occurrence of allergic disease in children and its association with other risk factors, including allergic disease in parents. Specific toxins like CO2 and other health conditions can be related to the diagnosis of allergic rhinitis. The response to food allergies was observed in many studies to conclude that heritability from parents to offspring is one of the leading risk factors for allergic diseases. Several studies have found a significant increase in the prevalence of allergic rhinitis in males than in females. Avoidance of a particular food was associated with an increased risk of developing an allergy to that food. At the molecular level, T cells are found to affect allergy outcomes through their part of the immune response.  Food proteins such as milk, egg, and peanut - common food allergens -  may cause an immune response in allergic individuals. Different therapies include Epicutaneous Immunotherapy (EPIT) and specific infant milk protein formulas. If this formula is taken from infancy, the allergic responses can be prevented/reduced.  As with seasonal allergies, prevention can be mediated by avoiding different pollution environments that may cause additional irritation, temperature control in a given atmosphere/humidity, and therapies of Vitamin C for immunity. With many other seasonal allergy triggers, it is ubiquitous among populations and dependent on the area and season. 


Download data is not yet available.

References or Bibliography

Amizadeh, M., Safizadeh, H., Bazargan, N., & Farrokhdoost, Z. (2013). Survey on the Prevalence of Allergic Rhinitis and its Effect on the Quality of High School Students’ Life. Iranian Journal of Otorhinolaryngology, 25(2).

Arshad, S. H., Karmaus, W., Raza, A., Kurukulaaratchy, R. J., Matthews, S. M., Holloway, J. W., Sadeghnejad, A., Zhang, H., Roberts, G., & Ewart, S. L. (2012). The effect of parental allergy on childhood allergic diseases depends on the sex of the child. Journal of Allergy and Clinical Immunology, 130(2), 427-434.e6.

Allergy Facts. (n.d.). Retrieved December 19, 2022, from Asthma & Allergy Foundation of America website:

Baumann, L. M., Romero, K. M., Robinson, C. L., Hansel, N. N., Gilman, R. H., Hamilton, R. G., Lima, J. J., Wise, R. A., & Checkley, W. (2014). Prevalence and risk factors for allergic rhinitis in two resource-limited settings in Peru with disparate degrees of urbanization. Clinical & Experimental Allergy, 45(1), 192–199.

Chang, Y., Hwang, C., Chen, Y., Lin, M., Chen, T., Chu, S., Chen, C., Lee, D., Wang, W., & Liu, H. (2010). Prevalence of Atopic Dermatitis, Allergic Rhinitis and Asthma in Taiwan: A National Study 2000 to 2007. Acta Dermato Venereologica, 90(6), 589–594.

Cingi, C., Conk-Dalay, M., Cakli, H., & Bal, C. (2008). The effects of spirulina on allergic rhinitis. European Archives of Oto-Rhino-Laryngology, 265(10), 1219–1223.

da Silva, M. F. S., Nóbrega, A., Ribeiro, R. C., Levy, M. S., Ribeiro, O. G., Tambourgi, D. V., Sant’Anna, D. A., & da Silva, A. C. (2006). Genetic selection for resistance or susceptibility to oral tolerance imparts correlation to both Immunoglobulin E level and mast cell number phenotypes with a profound impact on the atopic potential of the individual. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology, 36(11), 1399–1407.

Dold, S., Wjst, M., von Mutius, E., Reitmeir, P., & Stiepel, E. (1992). Genetic risk for asthma, allergic rhinitis, and atopic dermatitis. Archives of Disease in Childhood, 67(8), 1018–1022.

Du Toit, G., Roberts, G., Sayre, P. H., Bahnson, H. T., Radulovic, S., Santos, A. F., Brough, H. A., Phippard, D., Basting, M., Feeney, M., Turcanu, V., Sever, M. L., Gomez Lorenzo, M., Plaut, M., & Lack, G. (2015). Randomized trial of peanut consumption in infants at risk for peanut allergy. The New England Journal of Medicine, 372(9), 803–813.

Hong, X., Tsai, H.-J., & Wang, X. (2009). Genetics of food allergy. Current Opinion in Pediatrics, 21(6), 770–776.

Jones, S. M., Sicherer, S. H., Burks, A. W., Leung, D. Y. M., Lindblad, R. W., Dawson, P., Henning, A. K., Berin, M. C., Chiang, D., Vickery, B. P., Pesek, R. D., Cho, C. B., Davidson, W. F., Plaut, M., Sampson, H. A., & Wood, R. A. (2017). Epicutaneous immunotherapy for the treatment of peanut allergy in children and young adults. Journal of Allergy and Clinical Immunology, 139(4), 1242-1252.e9.

Kabesch, M., Schedel, M., Carr, D., Woitsch, B., Fritzsch, C., Weiland, S. K., & von Mutius, E. (2006). IL-4/IL-13 pathway genetics strongly influence serum IgE levels and childhood asthma. Journal of Allergy and Clinical Immunology, 117(2), 269–274.

Kef, K., & Güven, S. (2020). The Prevalence of Allergic Rhinitis and Associated Risk Factors Among University Students in Anatolia. Journal of Asthma and Allergy, Volume 13, 589–597.

Kim, H.-H. ., Lee, C.-S. ., Jeon, J.-M. ., Yu, S.-D. ., Lee, C.-W. ., Park, J.-H. ., Shin, D.-C. ., & Lim, Y.-W. . (2013). Analysis of the association between air pollution and allergic diseases exposure from nearby sources of ambient air pollution within elementary school zones in four Korean cities. Environmental Science and Pollution Research International, 20(7), 4831–4846.

Kim, S. H., Lee, J., Oh, I., Oh, Y., Sim, C. S., Bang, J.-H., Park, J., & Kim, Y. (2021). Allergic rhinitis is associated with atmospheric SO2: Follow-up study of children from elementary schools in Ulsan, Korea. PloS One, 16(3), e0248624.

Lavine, E., Clarke, A., Joseph, L., Shand, G., Alizadehfar, R., Asai, Y., Chan, E. S., Harada, L., Allen, M., & Ben-Shoshan, M. (2014). Peanut avoidance and peanut allergy diagnosis in siblings of peanut allergic children. Clinical & Experimental Allergy, 45(1), 249–254.

Lee, J., Yun, S., Oh, I., Kim, M., & Kim, Y. (2020). Impact of Environmental Factors on the Prevalence Changes of Allergic Diseases in Elementary School Students in Ulsan, Korea: A Longitudinal Study. International Journal of Environmental Research and Public Health, 17(23), 8831.

Maas, T., Nieuwhof, C., Passos, V. L., Robertson, C., Boonen, A., Landewé, R. B., Voncken, J. W., Knottnerus, J. A., & Damoiseaux, J. G. (2014). Transgenerational occurrence of allergic disease and autoimmunity: general practice-based epidemiological research. Primary Care Respiratory Journal: Journal of the General Practice Airways Group, 23(1), 14–21.

Maeda M, Imai T, Ishikawa R, Nakamura T, Kamiya T, Kimura A, Fujita S, Akashi K, Tada H, Morita H, Matsumoto K, Katsunuma T. Effect of oral immunotherapy in children with milk allergy: The ORIMA study. Allergol Int. 2021 Apr;70(2):223-228. doi: 10.1016/j.alit.2020.09.011

Mallet, E., & Henocq, A. (1992). Long-term prevention of allergic diseases by using protein hydrolysate formula in at-risk infants. The Journal of Pediatrics, 121(5), S95–S100.

Martino, D. J., Bosco, A., McKenna, K. L., Hollams, E., Mok, D., Holt, P. G., & Prescott, S. L. (2011). T-cell activation genes differentially expressed at birth in CD4+ T-cells from children who develop IgE food allergy. Allergy, 67(2), 191–200.

Martino, D., Joo, J. E., Sexton-Oates, A., Dang, T., Allen, K., Saffery, R., & Prescott, S. (2014). Epigenome-wide association study reveals longitudinally stable DNA methylation differences in CD4+ T cells from children with IgE-mediated food allergy. Epigenetics, 9(7), 998–1006.

Martino, D., Neeland, M., Dang, T., Cobb, J., Ellis, J., Barnett, A., Tang, M., Vuillermin, P., Allen, K., & Saffery, R. (2018). Epigenetic dysregulation of naive CD4+ T-cell activation genes in childhood food allergy. Nature Communications, 9(1), 3308.

Sakihara, T., Otsuji, K., Arakaki, Y., Hamada, K., Sugiura, S., & Ito, K. (2020). Randomized trial of early infant formula introduction to prevent cow’s milk allergy. Journal of Allergy and Clinical Immunology.

Skjerven, H. O., Lie, A., Vettukattil, R., Rehbinder, E. M., LeBlanc, M., Asarnoj, A., Carlsen, K.-H., Despriee, Å. W., Färdig, M., Gerdin, S. W., Granum, B., Gudmundsdóttir, H. K., Haugen, G., Hedlin, G., Håland, G., Jonassen, C. M., Landrø, L., Mägi, C.-A. O., Olsen, I. C., & Rudi, K. (2022). Early food intervention and skin emollients to prevent food allergy in young children (PreventADALL): a factorial, multicentre, cluster-randomised trial. The Lancet, 399(10344), 2398–2411.

Sultész, M., Horváth, A., Molnár, D., Katona, G., Mezei, G., Hirschberg, A., & Gálffy, G. (2020). Prevalence of allergic rhinitis, related comorbidities and risk factors in schoolchildren. Allergy, Asthma & Clinical Immunology, 16(1).

Vollbracht, C., Raithel, M., Krick, B., Kraft, K., & Hagel, A. F. (2018). Intravenous vitamin C in the treatment of allergies: an interim subgroup analysis of a long-term observational study. Journal of International Medical Research, 46(9), 3640–3655.

Watson, C. T., Cohain, A. T., Griffin, R. S., Chun, Y., Grishin, A., Hacyznska, H., Hoffman, G. E., Beckmann, N. D., Shah, H., Dawson, P., Henning, A., Wood, R., Burks, A. W., Jones, S. M., Leung, D. Y. M., Sicherer, S., Sampson, H. A., Sharp, A. J., Schadt, E. E., & Bunyavanich, S. (2017). Integrative transcriptomic analysis reveals key drivers of acute peanut allergic reactions. Nature Communications, 8(1).



How to Cite

Thatavarthy, S., & Fryer, K. . (2023). Transgenerational development of food allergies and allergic rhinitis. Journal of Student Research, 12(1).



HS Review Articles