Parkinson’s Disease: An Overview on its Neurophysiologi-cal Effects and Potential Treatments

Authors

  • Santosha Pochiraju Adlai E. Stevenson High School
  • Mia Edgerton Medical University of South Carolina

DOI:

https://doi.org/10.47611/jsrhs.v11i4.4061

Keywords:

Parkinson's Disease, Effects of PD, Potential therapies for PD, Neurophysiological Aspects of PD, Dopamine, Neurological Diseases

Abstract

Parkinson's disease is a progressive neurodegenerative disease characterized by tremors and bradykinesia (slowing of movement and speed) all due to the loss of dopamine levels in the brain. The loss of dopamine containing neurons in the brain becomes progressive and affects different parts of the brain. Dopamine is essential to the brain as dopamine enables neurons to communicate and control movement, which is lacking with Parkinson’s Disease. In Parkinson’s, the neurons are vulnerable to degeneration because of its extensive amount of energy with its vast systems of neurons. As Parkinson’s currently has no cure, the vast majority of the Parkinson’s Population is experiencing death at quick rates as short term solutions are not able to become long term. This review article sheds light on the disease progress of Parkinson’s, possible therapies with visual and auditory cueing at the main focus, and the studies effects on the treatment and scientific research progression on Parkinson’s Disease. 

Downloads

Download data is not yet available.

References or Bibliography

References

Samii A, Nutt JG, Ransom BR. 2004. Parkinson’s disease. Zenodo. 363(9423). doi:10.1016/s0140-6736(04)16305-8. https://zenodo.org/record/1259791#.XodMwWMzZhE.

Li J, Chen D, Song W, Chen K, Cao B, Huang R, Yang R, Shang H. 2014. Survey on general knowledge on Parkinson’s disease in patients with Parkinson’s disease and current clinical practice for Parkinson’s disease among general neurologists from Southwest China. Clinical Neurology and Neurosurgery. 118:16–20. doi:10.1016/j.clineuro.2013.12.009.

Varalta V, Picelli A, Fonte C, Amato S, Melotti C, Zatezalo V, Saltuari L, Smania N. 2015. Relationship between Cognitive Performance and Motor Dysfunction in Patients with Parkinson’s Disease: A Pilot Cross-Sectional Study. BioMed Research International. 2015:1–6. doi:10.1155/2015/365959.

Dec 1. Peripheral inflammation and neurodegeneration; a potential for therapeutic intervention in Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). ProQuest. doi:10.1186/s41984-022-00150-4. [accessed 2022 Sep 4].

‌Dorsey ER, Sherer T, Okun MS, Bloem BR. 2018. The Emerging Evidence of the Parkinson Pandemic. Brundin P, Langston JW, Bloem BR, editors. Journal of Parkinson’s Disease. 8(s1):S3–S8. doi:10.3233/jpd-181474.

Parkinson’s Disease: Challenges, Progress, and Promise | National Institute of Neurological Disorders and Stroke. wwwnindsnihgov. https://www.ninds.nih.gov/health-information/patient-caregiver-education/hope-through-research/parkinsons-disease/parkinsons-disease-challenges-progress-and-promise.

‌Prakash K, Bannur B, Chavan M, Saniya K, Sailesh K, Rajagopalan A. 2016. Neuroanatomical changes in Parkinson′s disease in relation to cognition: An update. Journal of Advanced Pharmaceutical Technology & Research. 7(4):123. doi:10.4103/2231-4040.191416. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052937/.

Nagae LM, Honce JM, Tanabe J, Shelton E, Sillau SH, Berman BD. 2016. Microstructural Changes within the Basal Ganglia Differ between Parkinson Disease Subtypes. Frontiers in Neuroanatomy. 10. doi:10.3389/fnana.2016.00017.

‌Cerasa A, Messina D, Pugliese P, Morelli M, Lanza P, Salsone M, Novellino F, Nicoletti G, Arabia G, Quattrone A. 2011. Increased prefrontal volume in PD with levodopa-induced dyskinesias: A voxel-based morphometry study. Movement Disorders. 26(5):807–812. doi:10.1002/mds.23660.

‌Galvan A, Devergnas A, Wichmann T. 2015. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state. Frontiers in Neuroanatomy. 9. doi:10.3389/fnana.2015.00005.

Troncoso-Escudero P, Parra A, Nassif M, Vidal RL. 2018. Outside in: Unraveling the Role of Neuroinflammation in the Progression of Parkinson’s Disease. Frontiers in Neurology. 9. doi:10.3389/fneur.2018.00860.

‌Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. (2018) 18:225–42. doi: 10.1038/nri.2017.125

Mamelak M. 2018. Parkinson’s Disease, the Dopaminergic Neuron and Gammahydroxybutyrate. Neurology and Therapy. 7(1):5–11. doi:10.1007/s40120-018-0091-2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990513/.

Surmeier DJ, Obeso JA, Halliday GM. 2017. Selective neuronal vulnerability in Parkinson disease. Nature Reviews Neuroscience. 18(2):101–113. doi:10.1038/nrn.2016.178. https://www.nature.com/articles/nrn.2016.178.

Fathi M, Vakili K, Yaghoobpoor S, Qadirifard MS, Kosari M, Naghsh N, Asgari taei A, Klegeris A, Dehghani M, Bahrami A, et al. 2022. Pre-clinical Studies Identifying Molecular Pathways of Neuroinflammation in Parkinson’s Disease: A Systematic Review. Frontiers in Aging Neuroscience. 14:855776. doi:10.3389/fnagi.2022.855776. [accessed 2022 Nov 9]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9327618/.

‌Bolam JP, Pissadaki EK. 2012. Living on the edge with too many mouths to feed: Why dopamine neurons die. Movement Disorders. 27(12):1478–1483. doi:10.1002/mds.25135.

Jankovic J, McDermott M, Carter J, Gauthier S, Goetz C, Golbe L, Huber S, Koller W, Olanow C, Shoulson I, et al. 1990. Variable expression of Parkinson’s disease: A base-line analysis of the DAT ATOP cohort. Neurology. 40(10):1529–1529. doi:10.1212/wnl.40.10.1529. https://physionet.org/files/inipdmsa/1.0/References/Jankovic-J_Variable-expression-of-Parkinsons-disease-a-base-line-analysis-of-the-DATATOP-cohort.pdf.

Feigin VL, Abajobir AA, Abate KH, Abd-Allah F, Abdulle AM, Abera SF, Abyu GY, Ahmed MB, Aichour AN, Aichour I, et al. 2017. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet Neurology. 16(11):877–897. doi:10.1016/s1474-4422(17)30299-5. https://www.sciencedirect.com/science/article/pii/S1474442217302995.

‌Wang Q, Liu Y, Zhou J. 2015. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Translational Neurodegeneration. 4(1). doi:10.1186/s40035-015-0042-0. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603346/.

Tang Y, Li T, Li J, Yang J, Liu H, Zhang XJ, Le W. 2013. Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson’s disease. Cell Death & Differentiation. 21(3):369–380. doi:10.1038/cdd.2013.159.

Polazzi E, Contestabile A. 2002. Reciprocal Interactions Between Microglia and Neurons: From Survival to Neuropathology. Reviews in the Neurosciences. 13(3). doi:10.1515/revneuro.2002.13.3.221.

‌Zhang Z, Zhang Z-Y, Schluesener HJ. 2009. Compound A, a Plant Origin Ligand of Glucocorticoid Receptors, Increases Regulatory T Cells and M2 Macrophages to Attenuate Experimental Autoimmune Neuritis with Reduced Side Effects. The Journal of Immunology. 183(5):3081–3091. doi:10.4049/jimmunol.0901088. [accessed 2022 Nov 9]. https://www.jimmunol.org/content/183/5/3081.

Goedert M, Jakes R, Spillantini MG. 2017. The Synucleinopathies: Twenty Years On. Journal of Parkinson’s Disease. 7(s1):S51–S69. doi:10.3233/jpd-179005.

Meade RM, Fairlie DP, Mason JM. 2019. Alpha-synuclein structure and Parkinson’s disease – lessons and emerging principles. Molecular Neurodegeneration. 14(1). doi:10.1186/s13024-019-0329-1.

Theillet F-X, Binolfi A, Bekei B, Martorana A, Rose HM, Stuiver M, Verzini S, Lorenz D, van Rossum M, Goldfarb D, et al. 2016. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature. 530(7588):45–50. doi:10.1038/nature16531.

‌Giasson BI. 2000. Oxidative Damage Linked to Neurodegeneration by Selective alpha -Synuclein Nitration in Synucleinopathy Lesions. Science. 290(5493):985–989. doi:10.1126/science.290.5493.985.

‌Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC. 2010. -Synuclein Promotes SNARE-Complex Assembly in Vivo and in Vitro. Science. 329(5999):1663–1667. doi:10.1126/science.1195227.

Chandra S, Chen X, Rizo J, Jahn R, Südhof TC. 2003. A Broken α-Helix in Folded α-Synuclein. Journal of Biological Chemistry. 278(17):15313–15318. doi:10.1074/jbc.m213128200.

Varkey J, Isas JM, Mizuno N, Jensen MB, Bhatia VK, Jao CC, Petrlova J, Voss JC, Stamou DG, Steven AC, et al. 2010. Membrane curvature induction and tubulation are common features of synucleins and apolipoproteins. The Journal of Biological Chemistry. 285(42):32486–32493. doi:10.1074/jbc.M110.139576. [accessed 2021 Mar 23]. https://pubmed.ncbi.nlm.nih.gov/20693280/.

Gandhi KR, Abdolreza Saadabadi. 2018 Oct 27. Levodopa (L-Dopa). Nihgov. https://www.ncbi.nlm.nih.gov/books/NBK482140/.

Parkinson’s disease - Treatment. 2017 Oct 23. nhsuk. https://www.nhs.uk/conditions/parkinsons-disease/treatment/#:~:text=your%20needs%20change.-.

The Parkinson Study Group. 2004. Levodopa and the Progression of Parkinson’s Disease. New England Journal of Medicine. 351(24):2498–2508. doi:10.1056/nejmoa033447. https://www.nejm.org/doi/full/10.1056/NEJMoa033447.

Cona L. 2022 Jan 26. Stem Cell Therapy for Parkinson’s Disease in 2020. wwwdvcstemcom. https://www.dvcstem.com/post/stem-cell-therapy-for-parkinsons.

Gravitz L. 2021. The promise and potential of stem cells in Parkinson’s disease. Nature. 597(7878):S8–S10. doi:10.1038/d41586-021-02622-3. https://www.nature.com/articles/d41586-021-02622-3.

Stoddard-Bennett T, Reijo Pera R. 2019. Treatment of Parkinson’s Disease through Personalized Medicine and Induced Pluripotent Stem Cells. Cells. 8(1):26. doi:10.3390/cells8010026. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357081/.

Stem Cell Therapy for Parkinson’s: Current Developments. 2022 Aug 1. Healthline. https://www.healthline.com/health/parkinsons/stem-cell-therapy-for-parkinsons.

Troche J, Troche MS, Berkowitz R, Grossman M, Reilly J. 2012. Tone Discrimination as a Window Into Acoustic Perceptual Deficits in Parkinson’s Disease. American Journal of Speech-Language Pathology. 21(3):258–263. doi:10.1044/1058-0360(2012/11-0007).

De Groote E, De Keyser K, Santens P, Talsma D, Bockstael A, Botteldooren D, De Letter M. 2020. Future Perspectives on the Relevance of Auditory Markers in Prodromal Parkinson’s Disease. Frontiers in Neurology. 11. doi:10.3389/fneur.2020.00689.

Nieuwboer A. 2015. Cueing effects in Parkinson’s disease: Benefits and drawbacks. Annals of Physical and Rehabilitation Medicine. 58:e70–e71. doi:10.1016/j.rehab.2015.07.173.

Heremans E, Nieuwboer A, Feys P, Vercruysse S, Vandenberghe W, Sharma N, Helsen WF. 2011. External Cueing Improves Motor Imagery Quality in Patients With Parkinson Disease. Neurorehabilitation and Neural Repair. 26(1):27–35. doi:10.1177/1545968311411055.

Rubinstein TC, Giladi N, Hausdorff JM. 2002. The power of cueing to circumvent dopamine deficits: A review of physical therapy treatment of gait disturbances in Parkinson’s disease. Movement Disorders. 17(6):1148–1160. doi:10.1002/mds.10259. https://pubmed.ncbi.nlm.nih.gov/12465051/.

Lim I, van Wegen E, de Goede C, Deutekom M, Nieuwboer A, Willems A, Jones D, Rochester L, Kwakkel G. 2005. Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clinical rehabilitation. 19(7):695–713. doi:10.1191/0269215505cr906oa. https://www.ncbi.nlm.nih.gov/pubmed/16250189?dopt=Abstract.

Verschueren SM, Swinnen SP, Dom R, De Weerdt W. 1997. Interlimb coordination in patients with Parkinson’s disease: motor learning deficits and the importance of augmented information feedback. Experimental Brain Research. 113(3):497–508. doi:10.1007/pl00005602. https://pubmed.ncbi.nlm.nih.gov/9108216/.

Schaafsma JD, Balash Y, Gurevich T, Bartels AL, Hausdorff JM, Giladi N. 2003. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. European Journal of Neurology. 10(4):391–398. doi:10.1046/j.1468-1331.2003.00611.x.

Nieuwboer A, Dom R, De Weerdt W, Desloovere K, Fieuws S, Broens-Kaucsik E. 2001. Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson’s disease. Movement Disorders. 16(6):1066–1075. doi:10.1002/mds.1206.

‌Velik, Rosemarie, et al. “Effect of Sensory Cues Applied at the Onset of Freezing Episodes in Parkinson’s Disease Patients.” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 6, no. 8, Aug. 2012, pp. 57–62.

‌Clower DM, West RA, Lynch JC, Strick PL. 2001. The Inferior Parietal Lobule Is the Target of Output from the Superior Colliculus, Hippocampus, and Cerebellum. The Journal of Neuroscience. 21(16):6283–6291. doi:10.1523/jneurosci.21-16-06283.2001.

‌Dalla Bella S. 2015. Using music to improve mobility in Parkinson’s disease: Effects beyond gait? Annals of Physical and Rehabilitation Medicine. 58:e71. doi:10.1016/j.rehab.2015.07.174.

‌Young WR, Shreve L, Quinn EJ, Craig C, Bronte-Stewart H. 2016. Auditory cueing in Parkinson’s patients with freezing of gait. What matters most: Action-relevance or cue-continuity? Neuropsychologia. 87:54–62. doi:10.1016/j.neuropsychologia.2016.04.034.

‌Young WR, Rodger MWM, Craig CM. 2014. Auditory observation of stepping actions can cue both spatial and temporal components of gait in Parkinson׳s disease patients. Neuropsychologia. 57:140–153. doi:10.1016/j.neuropsychologia.2014.03.009.

‌Ghai S, Ghai I, Schmitz G, Effenberg AO. 2018. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis. Scientific Reports. 8(1). doi:10.1038/s41598-017-16232-5. https://www.nature.com/articles/s41598-017-16232-5.

‌Kraus N, Slater J, Thompson EC, Hornickel J, Strait DL, Nicol T, White-Schwoch T. 2014. Auditory learning through active engagement with sound: biological impact of community music lessons in at-risk children. Frontiers in Neuroscience. 8. doi:10.3389/fnins.2014.00351.

‌Ghai S, Ghai I, Effenberg AO. 2018. Effect of Rhythmic Auditory Cueing on Aging Gait: A Systematic Review and Meta-Analysis. Aging and disease. 9(5):901. doi:10.14336/ad.2017.1031. [accessed 2019 Oct 16]. http://www.aginganddisease.org/EN/abstract/abstract147691.shtml.

‌Ermolaeva VYu, Borgest AN. 1980. Intercortical connections of the auditory areas with the motor area. Neuroscience and Behavioral Physiology. 10(3):210–215. doi:10.1007/bf01182212.

‌Rosenthal L, Sweeney D, Cunnington A-L, Quinlan LR, ÓLaighin G. 2018. Sensory Electrical Stimulation Cueing May Reduce Freezing of Gait Episodes in Parkinson’s Disease. Journal of Healthcare Engineering. 2018:1–6. doi:10.1155/2018/4684925.

Does Medicare Cover Stem Cell Therapy? Verywell Health. https://www.verywellhealth.com/does-medicare-cover-stem-cell-therapy-5206838.

Cona LA. 2021 Jun 17. The Cost of Stem Cell Therapy in 2020. wwwdvcstemcom. https://www.dvcstem.com/post/stem-cell-therapy-cost-2020.

Klimovich A, Giacomello S, Björklund Å, Faure L, Kaucka M, Giez C, Murillo-Rincon AP, Matt A-S, Willoweit-Ohl D, Crupi G, et al. 2020. Prototypical pacemaker neurons interact with the resident microbiota. Proceedings of the National Academy of Sciences. 117(30):17854–17863. doi:10.1073/pnas.1920469117.

‌Geierman DB. 2022 Jan 30. Playing With Processing: External Cues and Motor Performance. Barbell Rehab. [accessed 2022 Nov 26]. https://barbellrehab.com/external-cues-motor-performance/#:~:text=Well%2C%20research%20shows%20that%20external.

Wu T, Hallett M. 2013. The cerebellum in Parkinson’s disease. Brain. 136(3):696–709. doi:10.1093/brain/aws360.

‌Sukel K. 2019 Aug 25. Neuroanatomy: The Basics. Dana Foundation. https://dana.org/article/neuroanatomy-the-basics/.

Calabresi P., Picconi B., Tozzi A., Di Filippo M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends in Neurosciences. 2007;30(5):211–219. doi: 10.1016/j.tins.2007.03.001.

Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. 2022 Mar 4. Inflammation and immune dysfunction in Parkinson disease. Nature Reviews Immunology.:1–17. doi:10.1038/s41577-022-00684-6. https://www.nature.com/articles/s41577-022-00684-6#Sec2.

Lewy Body Dementia (LBD). 2022. wwwhopkinsmedicineorg. https://www.hopkinsmedicine.org/health/conditions-and-diseases/dementia/dementia-with-lewy-bodies.

Lewy Body - an overview | ScienceDirect Topics. wwwsciencedirectcom. https://www.sciencedirect.com/topics/neuroscience/lewy-body.

Published

11-30-2022

How to Cite

Pochiraju, S., & Edgerton, M. (2022). Parkinson’s Disease: An Overview on its Neurophysiologi-cal Effects and Potential Treatments. Journal of Student Research, 11(4). https://doi.org/10.47611/jsrhs.v11i4.4061

Issue

Section

HS Review Articles