Analyzing Properties of Monolayer MoS2 Using RHEED and Ultrafast Electron Diffraction

Authors

  • Calvin Chiu Klein Cain High School
  • Thomas Liang Dawson High School

DOI:

https://doi.org/10.47611/jsrhs.v12i1.4023

Keywords:

RHEED, Ultrafast Electron Diffraction, Crystal Structures, Monolayer MoS2

Abstract

Reflection high-energy electron diffraction (RHEED) and ultrafast electron diffraction (UED) are techniques used to characterize crystal structures both statically and dynamically. These experimental methods are of academic interest due to their ability to visualize crystal structures on the atomic level and analyze dynamic changes on the picosecond scale. In this experiment, RHEED and UED are implemented to analyze monolayer molybdenum disulfide (MoS2), a compound that may contribute to the future of microelectronics. Images of various diffraction patterns are presented, and analysis is conducted on diffraction peaks, lattice spacing, and photoinduced intensity changes.

Downloads

Download data is not yet available.

References or Bibliography

Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V., Kis, Andras. 2D transition metal dichalcogenides. Nat Rev Mater, 2, 17033. (2017). doi:10.1038/natrevmats.2017.33

Li, X., & Zhu, H. Two-dimensional MoS2: Properties, preparation, and applications. Journal of Materiomics, 1(1), 33–44. (2015). doi:10.1016/j.jmat.2015.03.003

Ohtake, A., Yang, X. & Nara, J. Structure and morphology of 2H-MoTe2 monolayer on GaAs(111)B grown by molecular-beam epitaxy. npj 2D Mater Appl, 6, 35. (2022). doi:10.1038/s41699-022-00310-y

Wang W, Yang C, Bai L, Li M, Li W. First-principles study on the structural and electronic properties of monolayer MoS2 with S-vacancy under uniaxial tensile strain. Nanomaterials, 8(2), 74. (2018). doi:10.3390/nano8020074

Xiang, Y., Sun, X., Valdman, L., Zhang, F., Choudhury, T. H., Chubarov, M., Robinson, J. A., Redwing, J. M., Terrones, M., Ma, Y., Gao, L., Washington, M. A., Lu, T.-M., & Wang, G.-C. Monolayer MoS2 on sapphire: An azimuthal reflection high-energy electron diffraction perspective. 2D Materials, 8(2), 025003. (2021). doi:10.1088/2053-1583/abce08

Frigge, T., Hafke, B., Tinnemann, V., Witte, T., Horn-von Hoegen, M. Spot profile analysis and lifetime mapping in ultrafast electron diffraction: Lattice excitation of self-organized Ge nanostructures on Si(001). Structural Dynamics, 2(3), 035101. (2015). doi:10.1063/1.4922023

Ichimiya A., Cohen P. I. Reflection high-energy electron diffraction. Cambridge University Press: Cambridge, New York. (2004).

Van Stokkum, I. H. M., Larsen, D. S., van Grondelle, R. Global and target analysis of time-resolved spectra. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1657(2-3), 82–104. (2004). doi:10.1016/j.bbabio.2004.04.011

Ruan, C.-Y., Yang, D.-S., & Zewail, A. H. Structures and dynamics of self-assembled surface monolayers observed by ultrafast electron crystallography. Journal of the American Chemical Society, 126(40), 12797–12799. (2004). doi:10.1021/ja045441n

Zewail, A. H. 4D ultrafast electron diffraction, crystallography, and microscopy. Annual Review of Physical Chemistry, 57(1), 65–103. (2006). doi:10.1146/annurev.physchem.57.032905.104748

González Vallejo, I., Gallé, G., Arnaud, B., Scott, S. A., Lagally, M. G., Boschetto, D., Coulon, P.-E., Rizza, G., Houdellier, F., Bolloc’h, D. L., Faure, J. Observation of large multiple scattering effects in ultrafast electron diffraction on monocrystalline silicon. Physical Review B, 97(5). (2018). doi:10.1103/physrevb.97.054302

Yang, D.-S., Gedik, N., & Zewail, A. H. Ultrafast electron crystallography. 1. Nonequilibrium dynamics of nanometer-scale structures. The Journal of Physical Chemistry C, 111(13), 4889–4919. (2007). doi:10.1021/jp067466+

Wakabayashi, N., Smith, H. G., & Nicklow, R. M. Lattice dynamics of hexagonal MoS2 studied by neutron scattering. Physical Review B, 12(2), 659–663. (1975). doi:10.1103/physrevb.12.659

Booker, I., Rahimzadeh Khoshroo, L., Woitok, J. F., Kaganer, V., Mauder, C., Behmenburg, H., Gruis, J., Heuken, M., Kalisch, H., Jansen, R. H. Dislocation density assessment via X-ray GaN rocking curve scans. Physica Status Solidi (c), 7(7-8), 1787–1789. (2010). doi:10.1002/pssc.200983615

Li, C., Cui, D., Zhou, Y., Lu, H., Chen, Z., Zhang, D., & Wu, F. Asymmetric rocking curve study of the crystal structure orientations for BaTiO3 thin films grown by pulsed laser deposition. Applied Surface Science, 136(3), 173–177. (1998). doi:10.1016/s0169-4332(98)00342-0

Yang, Ding-Shyue (Jerry). Ultrafast electron crystallography: Principles and applications [Doctoral dissertation, California Institute of Technology]. (2009). doi:10.7907/Y61P-2B24. https://resolver.caltech.edu/CaltechETD:etd-05082009-170032

He, X., Chebl, M., & Yang, D.-S. Cross-examination of ultrafast structural, interfacial, and carrier dynamics of supported monolayer MoS2. Nano Letters, 20(3), 2026–2033. (2020). doi:10.1021/acs.nanolett.9b05344

Eades, J. A. Laue zones: A clarification of nomenclature. Ultramicroscopy, 32(2), 183. (1990). doi:10.1016/0304-3991(90)90037-m

Pawlak, J., Przybylski, M., & Mitura, Z. An analysis of Kikuchi lines observed with a RHEED apparatus for a TiO2-terminated SrTiO3 (001) crystal. Materials, 14(22), 7077. (2021). doi:10.3390/ma14227077

Chiappe, D., Scalise, E., Cinquanta, E., Grazianetti, C., van den Broek, B., Fanciulli, M., Houssa, M., Molle, A. Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Advanced Materials, 26(13), 2096–2101. (2013). doi:10.1002/adma.201304783

Ashcroft N., Mermin N. Solid state physics. Harcourt Incorporated, New York. (1976).

Wu, Chenyi. Ordered structures of molecular assemblies at interfaces [Doctoral dissertation, University of Houston]. Institutional Repository at the University of Houston. (2019). https://uh-ir.tdl.org/handle/10657/5724

Huang, H., Huang, C.-P., Zhang, C., Hong, X.-H., Zhang, X.-J., Qin, Y.-Q., & Zhu, Y.-Y. From Ewald sphere to Ewald shell in nonlinear optics. Scientific Reports, 6(1). (2016). doi:10.1038/srep29365

Xiang, Y., Guo, F.-W., Lu, T.-M., & Wang, G.-C. Reflection high-energy electron diffraction measurements of reciprocal space structure of 2D materials. Nanotechnology, 27(48), 485703. (2016). doi:10.1088/0957-4484/27/48/485703

Kim, H. W., Vinokurov, N. A., Baek, I. H., Oang, K. Y., Kim, M. H., Kim, Y. C.,Jang, K.-H., Lee, K., Park, S. H., Park, S., Shin, J., Kim, J., Rotermund, F., Cho, S., Feurer, T., Jeong, Y. U. Towards jitter-free ultrafast electron diffraction technology. Nature Photonics, 14(4), 245–249. (2019). doi:10.1038/s41566-019-0566-4

Liu, Z., Song, Y., Rajappan, A., Wang, E. N., & Preston, D. J. Temporal evolution of surface contamination under ultra-high vacuum. Langmuir, 38(3), 1252–1258. (2022). doi:10.1021/acs.langmuir.1c03062

Published

02-28-2023

How to Cite

Chiu, C., & Liang, T. (2023). Analyzing Properties of Monolayer MoS2 Using RHEED and Ultrafast Electron Diffraction. Journal of Student Research, 12(1). https://doi.org/10.47611/jsrhs.v12i1.4023

Issue

Section

HS Research Articles