The Gut Microbiome and Alzheimer’s Disease: Can the Gut be Used to Prevent or Treat Dementia?

Authors

  • Samhitha Vundi Rising Tide Charter Public School
  • Zena Chatila

DOI:

https://doi.org/10.47611/jsrhs.v11i4.3356

Keywords:

Alzheimer's Disease, Microbiome, Gut Microbiome, Gut-Brain Axis

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease and the most common cause of dementia1. There are currently no effective therapies for AD and its etiology remains poorly understood. Recent research has suggested that the gut microbiome may modulate risk for AD, as well as the disease process itself. This paper reviews the current knowledge surrounding AD and the gut microbiome, and aims to explore how this relationship may be used to advance our clinical understanding of the disease; including whether the gut microbiome could be a novel drug target or even serve as a potential biomarker for AD. Although this relationship between AD and the microbiome has not yet been fully elucidated, the gut microbiome is known to dynamically respond to lifestyle factors including sleep, exercise, and nutrition, all of which impact AD-risk. This body of evidence suggests that there may be a relationship between microbiome health and AD. Early studies are investigating whether the microbiome is changed in individuals with AD, and whether any metabolites or bacterial signatures unique in AD populations could be used as a biomarker for early detection of the disease. This review will discuss these points and reflect on how the clinical landscape for AD may be improved by assaying the microbiome and implementing lifestyle factors that both improve microbiome health and reduce AD risk. 

 

Downloads

Download data is not yet available.

References or Bibliography

Long, J. M. & Holtzman, D. M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell vol. 179 312–339 (2019). https://doi.org/10.1016/j.cell.2019.09.001

A Armstrong, R. Risk factors for Alzheimer’s disease. Folia Neuropathol. 57, 87–105 (2019). https://doi.org/10.5114/fn.2019.85929

Duyckaerts, C., Delatour, B. & Potier, M.-C. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 118, 5–36 (2009). https://doi.org/10.1007/s00401-009-0532-1

Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016). https://doi.org/10.15252/emmm.201606210

Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991). https://doi.org/10.1007/bf00308809

Giannakopoulos, P. et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology vol. 60 1495–1500 (2003). https://doi.org/10.1212/01.wnl.0000063311.58879.01

Brookmeyer, R. et al. National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimer’s & Dementia vol. 7 61–73 (2011). https://doi.org/10.1016/j.jalz.2010.11.007

Wu, L. et al. Altered Gut Microbial Metabolites in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease: Signals in Host–Microbe Interplay. Nutrients vol. 13 228 (2021). https://doi.org/10.3390/nu13010228

Sun, Y. et al. Intra-gastrointestinal amyloid-β1-42 oligomers perturb enteric function and induce Alzheimer’s disease pathology. J. Physiol. 598, 4209–4223 (2020). https://doi.org/10.1113/jp279919

Nagpal, R., Neth, B. J., Wang, S., Craft, S. & Yadav, H. Modified Mediterranean-Ketogenic Diet Modulates Gut Microbiome and Short-Chain Fatty Acids in Association with Alzheimer’s Disease Markers in Subjects with Mild Cognitive Impairment. SSRN Electronic Journal (2019).https://doi.org/10.1016/j.ebiom.2019.08.032

Marizzoni, M. et al. Short-Chain Fatty Acids and Lipopolysaccharide as Mediators Between Gut Dysbiosis and Amyloid Pathology in Alzheimer’s Disease. J. Alzheimers. Dis. 78, 683–697 (2020). https://doi.org/10.3233/jad-200306

Kim, M.-S. et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut vol. 69 283–294 (2020). https://doi.org/10.1136/gutjnl-2018-317431

Davenport, E. R. et al. The human microbiome in evolution. BMC Biol. 15, 127 (2017). https://doi.org/10.1186/s12915-017-0454-7

Barko, P. C., McMichael, M. A., Swanson, K. S. & Williams, D. A. The Gastrointestinal Microbiome: A Review. J. Vet. Intern. Med. 32, 9–25 (2018). https://doi.org/10.1111/jvim.14875

Shanahan, F., Ghosh, T. S. & O’Toole, P. W. The Healthy Microbiome-What Is the Definition of a Healthy Gut Microbiome? Gastroenterology 160, 483–494 (2021). https://doi.org/10.1053/j.gastro.2020.09.057

Ursell, L. K., Metcalf, J. L., Parfrey, L. W. & Knight, R. Defining the human microbiome. Nutr. Rev. 70 Suppl 1, S38–44 (2012). https://doi.org/10.1111/j.1753-4887.2012.00493.x

Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007). https://doi.org/10.1038/nature06244

Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018). https://doi.org/10.1038/nm.4517

Mohajeri, M. H. et al. The role of the microbiome for human health: from basic science to clinical applications. Eur. J. Nutr. 57, 1–14 (2018). https://doi.org/10.1007/s00394-018-1703-4

Arslanoglu, S. et al. Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J. Nutr. 138, 1091–1095 (2008). https://doi.org/10.1093/jn/138.6.1091

Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012). https://doi.org/10.1038/nrgastro.2012.156

Hamer, H. M. et al. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27, 104–119 (2008). https://doi.org/10.1111/j.1365-2036.2007.03562.x

Rakoff-Nahoum, S., Foster, K. R. & Comstock, L. E. The evolution of cooperation within the gut microbiota. Nature 533, 255–259 (2016). https://doi.org/10.1038/nature17626

Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012). https://doi.org/10.1038/nature11319

Feng, Y. et al. An examination of data from the American Gut Project reveals that the dominance of the genus Bifidobacterium is associated with the diversity and robustness of the gut microbiota. Microbiologyopen 8, e939 (2019). https://doi.org/10.1002/mbo3.939

Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006). https://doi.org/10.1038/nature05414

Ianiro, G., Tilg, H. & Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 65, 1906–1915 (2016). https://doi.org/10.1136/gutjnl-2016-312297

Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U. S. A. 102, 11070–11075 (2005). https://doi.org/10.1073/pnas.0504978102

Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U. S. A. 104, 13780–13785 (2007). https://doi.org/10.1073/pnas.0706625104

Tong, M. et al. A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease. PLoS One 8, e80702 (2013). https://doi.org/10.1371/journal.pone.0080702

Gomaa, E. Z. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113, 2019–2040 (2020). https://doi.org/10.1007/s10482-020-01474-7

Thursby, E. & Juge, N. Introduction to the human gut microbiota. Biochem. J 474, 1823–1836 (2017). https://doi.org/10.1042/bcj20160510

David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014). https://doi.org/10.1038/nature12820

Belizário, J. E. & Faintuch, J. Microbiome and Gut Dysbiosis. Experientia Suppl. 109, 459–476 (2018). https://doi.org/10.1007/978-3-319-74932-7_13

Hufnagl, K., Pali-Schöll, I., Roth-Walter, F. & Jensen-Jarolim, E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin. Immunopathol. 42, 75–93 (2020). https://doi.org/10.1007/s00281-019-00775-y

Hughes, H. K., Rose, D. & Ashwood, P. The Gut Microbiota and Dysbiosis in Autism Spectrum Disorders. Curr. Neurol. Neurosci. Rep. 18, 81 (2018). https://doi.org/10.1007/s11910-018-0887-6

Santacroce, L. et al. The Human Respiratory System and its Microbiome at a Glimpse. Biology 9, (2020). https://doi.org/10.3390/biology9100318

Roda, G. et al. Crohn’s disease. Nat Rev Dis Primers 6, 22 (2020). https://doi.org/10.1038/s41572-020-0156-2

Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021). https://doi.org/10.1038/s41579-020-0433-9

Jia, W., Xie, G. & Jia, W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111–128 (2018). https://doi.org/10.1038/nrgastro.2017.119

Smith, R. P. et al. Gut microbiome diversity is associated with sleep physiology in humans. PLoS One 14, e0222394 (2019). https://doi.org/10.1371%2Fjournal.pone.0222394

Liu, X. et al. Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) study: Rationale, design and baseline characteristics of a randomized control trial of the MIND diet on cognitive decline. Contemp. Clin. Trials 102, 106270 (2021). https://doi.org/10.1016%2Fj.cct.2021.106270

Hamer, M. & Chida, Y. Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol. Med. 39, 3–11 (2009). https://doi.org/10.1017/s0033291708003681

Winer, J. R. et al. Association of Short and Long Sleep Duration With Amyloid-β Burden and Cognition in Aging. JAMA Neurol. 78, 1187–1196 (2021). https://doi.org/10.1001/jamaneurol.2021.2876

Marizzoni, M. et al. Short-Chain Fatty Acids and Lipopolysaccharide as Mediators Between Gut Dysbiosis and Amyloid Pathology in Alzheimer’s Disease. Advances in Alzheimer’s Disease (2022). https://doi.org/10.3233/jad-200306

Romijn, J. A., Corssmit, E. P., Havekes, L. M. & Pijl, H. Gut-brain axis. Curr. Opin. Clin. Nutr. Metab. Care 11, 518–521 (2008). https://doi.org/10.1097/mco.0b013e328302c9b0

Kim, Y.-K. & Shin, C. The Microbiota-Gut-Brain Axis in Neuropsychiatric Disorders: Pathophysiological Mechanisms and Novel Treatments. Curr. Neuropharmacol. 16, 559–573 (2018). https://doi.org/10.2174/1570159x15666170915141036

Carabotti, M., Scirocco, A., Maselli, M. A. & Severi, C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. Hepatol. 28, 203–209 (2015) .https://pubmed.ncbi.nlm.nih.gov/25830558/

Cryan, J. F. et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. (2019). https://doi.org/10.1152/physrev.00018.2018

Needham, B. D. et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 602, 647–653 (2022). https://doi.org/10.1038/s41586-022-04396-8

Sudo, N. et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol. 558, 263–275 (2004). https://doi.org/10.1113/jphysiol.2004.063388

Sampson, T. R. & Mazmanian, S. K. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17, 565–576 (2015). https://doi.org/10.1016/j.chom.2015.04.011

Clarke, G. et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18, 666–673 (2013). https://doi.org/10.1038/mp.2012.77

Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609, 609.e1–3 (2011). https://doi.org/10.1053/j.gastro.2011.04.052

Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. U. S. A. 108, 16050–16055 (2011). https://doi.org/10.1073/pnas.1102999108

Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153.e14 (2021). https://doi.org/10.1016/j.cell.2021.06.019

Cait, A. et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol. 11, 785–795 (2018). https://doi.org/10.1038/mi.2017.75

Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013). https://doi.org/10.1126/science.1241165

Yang, W. et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat. Commun. 11, 4457 (2020). https://doi.org/10.1038/s41467-020-18262-6

Lee, J. et al. Gut Microbiota-Derived Short-Chain Fatty Acids Promote Poststroke Recovery in Aged Mice. Circ. Res. 127, 453–465 (2020). https://doi.org/10.1161/circresaha.119.316448

Yang, I. et al. The Infant Microbiome: Implications for Infant Health and Neurocognitive Development. Nurs. Res. 65, 76–88 (2016). https://doi.org/10.1097/nnr.0000000000000133

Bron, P. A. et al. Can probiotics modulate human disease by impacting intestinal barrier function? Br. J. Nutr. 117, 93–107 (2017). https://doi.org/10.1017/s0007114516004037

Wan, Y. et al. Underdevelopment of the gut microbiota and bacteria species as non-invasive markers of prediction in children with autism spectrum disorder. Gut 71, 910–918 (2022). https://doi.org/10.1136/gutjnl-2020-324015

Li, S. et al. The gut microbiome is associated with brain structure and function in schizophrenia. Sci. Rep. 11, 9743 (2021). https://doi.org/10.1038/s41598-021-89166-8

Leong, K. S. W. et al. Effects of Fecal Microbiome Transfer in Adolescents With Obesity: The Gut Bugs Randomized Controlled Trial. JAMA Netw Open 3, e2030415 (2020). https://doi.org/10.1001/jamanetworkopen.2020.30415

Gupta, A., Osadchiy, V. & Mayer, E. A. Brain-gut-microbiome interactions in obesity and food addiction. Nat. Rev. Gastroenterol. Hepatol. 17, 655–672 (2020). https://doi.org/10.1038/s41575-020-0341-5

Gareau, M. G. et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60, 307–317 (2011). https://doi.org/10.1136/gut.2009.202515

Hu, X., Wang, T. & Jin, F. Alzheimer’s disease and gut microbiota. Sci. China Life Sci. 59, 1006–1023 (2016). https://doi.org/10.1007/s11427-016-5083-9

Blennow, K. & Zetterberg, H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J. Intern. Med. 284, 643–663 (2018). https://doi.org/10.1111/joim.12816

Tan, C.-C., Yu, J.-T. & Tan, L. Biomarkers for preclinical Alzheimer’s disease. J. Alzheimers. Dis. 42, 1051–1069 (2014). https://doi.org/10.3233/jad-140843

Nho, K. et al. Altered bile acid profile in mild cognitive impairment and Alzheimer’s disease: Relationship to neuroimaging and CSF biomarkers. Alzheimers. Dement. 15, 232–244 (2019). https://doi.org/10.1016%2Fj.jalz.2018.08.012

Irwin, M. R. & Vitiello, M. V. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol. 18, 296–306 (2019). https://doi.org/10.1016/s1474-4422(18)30450-2

Borges, C. R., Poyares, D., Piovezan, R., Nitrini, R. & Brucki, S. Alzheimer’s disease and sleep disturbances: a review. Arq. Neuropsiquiatr. 77, 815–824 (2019). https://doi.org/10.1590/0004-282x20190149

Wang, C. & Holtzman, D. M. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors. Neuropsychopharmacology 45, 104–120 (2020). https://doi.org/10.1038/s41386-019-0478-5

Cass, S. P. Alzheimer’s Disease and Exercise: A Literature Review. Curr. Sports Med. Rep. 16, 19–22 (2017). https://doi.org/10.1249/jsr.0000000000000332

Valenzuela, P. L. et al. Exercise benefits on Alzheimer’s disease: State-of-the-science. Ageing Res. Rev. 62, 101108 (2020). https://doi.org/10.1016/j.arr.2020.101108

Cui, M. Y., Lin, Y., Sheng, J. Y., Zhang, X. & Cui, R. J. Exercise Intervention Associated with Cognitive Improvement in Alzheimer’s Disease. Neural Plast. 2018, 9234105 (2018). https://doi.org/10.1155/2018/9234105

Sohail, M. U., Yassine, H. M., Sohail, A. & Thani, A. A. A. Impact of Physical Exercise on Gut Microbiome, Inflammation, and the Pathobiology of Metabolic Disorders. Rev. Diabet. Stud. 15, 35–48 (2019). https://doi.org/10.1900/rds.2019.15.35

Ticinesi, A. et al. Exercise and immune system as modulators of intestinal microbiome: implications for the gut-muscle axis hypothesis. Exerc. Immunol. Rev. 25, 84–95 (2019). https://pubmed.ncbi.nlm.nih.gov/30753131/

Clarke, S. F. et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 63, 1913–1920 (2014). https://doi.org/10.1136/gutjnl-2013-306541

Dhakal, S. et al. Amish (Rural) vs. non-Amish (Urban) Infant Fecal Microbiotas Are Highly Diverse and Their Transplantation Lead to Differences in Mucosal Immune Maturation in a Humanized Germfree Piglet Model. Front. Immunol. 10, 1509 (2019). https://doi.org/10.3389/fimmu.2019.01509

Das, B. et al. Analysis of the Gut Microbiome of Rural and Urban Healthy Indians Living in Sea Level and High Altitude Areas. Scientific Reports vol. 8 (2018). https://doi.org/10.1038/s41598-018-28550-3

Wang, W. et al. Exposure to concentrated ambient PM2.5 alters the composition of gut microbiota in a murine model. Particle and Fibre Toxicology vol. 15 (2018). https://doi.org/10.1186/s12989-018-0252-6

Attademo, L. & Bernardini, F. Air Pollution as Risk Factor for Mental Disorders: In Search for a Possible Link with Alzheimer’s Disease and Schizophrenia. J. Alzheimers. Dis. 76, 825–830 (2020). https://doi.org/10.3233/jad-200289

Fu, P. & Yung, K. K. L. Air Pollution and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Alzheimers. Dis. 77, 701–714 (2020). https://doi.org/10.3233/jad-200483

Published

11-30-2022

How to Cite

Vundi, S., & Chatila, Z. (2022). The Gut Microbiome and Alzheimer’s Disease: Can the Gut be Used to Prevent or Treat Dementia?. Journal of Student Research, 11(4). https://doi.org/10.47611/jsrhs.v11i4.3356

Issue

Section

HS Review Articles