Investigating the DNA Damage Response Elicited by Transposable Element Integration


  • Naima Pyarali Albuquerque Academy
  • Ari Broad Cornell University



transposable elements, DNA damage response, CRISPR/Cas12k


All organisms encounter DNA damage daily through UV exposure, carcinogens, and more. Therefore, there must be a conserved system in place to repair such damage. The DNA Damage Response (DDR) is the conserved system that protects and repairs DNA lesions and breaks. It is known that some mobile genetic elements, such as transposable elements (TEs), can elicit the DDR to aid the transposition efficiency while maintaining a low mutagenesis rate. However, other TE and CRISPR/Cas9 studies propose that DDR activation can lead to off target and mutagenic effects. With the search for a better genetic editor, the CRISPR/Cas12k system has become a hot target due to its precise prokaryotic genome editing through transposition. By considering the mechanisms at play in endogenous TEs, retrotransposons, and CRISPR/Cas9, we can achieve a clearer understanding of the eukaryotic cell’s response to genetic modification through the CRISPR/Cas12k system.


Download data is not yet available.

Author Biography

Ari Broad, Cornell University

BMCB PhD Candidate | Fromme Lab NSF Graduate Research Fellow | Alfred P. Sloan Fellow Department of Molecular Biology and Genetics  Weill Institute for Cell & Molecular Biology  460 Weill Hall | Cornell University | Ithaca, NY

References or Bibliography

Bourque, G., Burns, K. H., Gehring, M., Gorbunova, V., Seluanov, A., Hammell, M., Imbeault, M., Izsvák, Z., Levin, H. L., Macfarlan, T. S., Mager, D. L., & Feschotte, C. (2018). Ten things you should know about transposable elements 06 Biological Sciences 0604 Genetics. Genome Biology, 19(1).

Cubbon, A., Ivancic-Bace, I., & Bolt, E. L. (2018). CRISPR-Cas immunity, DNA repair and genome stability. In Bioscience Reports (Vol. 38, Issue 5, pp. 1–10). Portland Press Ltd.

Dick, R. A., Xu, C., Morado, D. R., Kravchuk, V., Ricana, C. L., Lyddon, T. D., Broad, A. M., Feathers, J. R., Johnson, M. C., Vogt, V. M., Perilla, J. R., Briggs, J. A. G., & Schur, F. K. M. (2020). Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. PLoS Pathogens, 16(1).

Henssen, A. G., & Kentsis, A. (2018). Emerging functions of DNA transposases and oncogenic mutators in childhood cancer development. In JCI insight (Vol. 3, Issue 20). NLM (Medline).

Jackson, S. P., & Bartek, J. (2009). The DNA-damage response in human biology and disease. In Nature (Vol. 461, Issue 7267, pp. 1071–1078).

Lans, H., Marteijn, J. A., & Vermeulen, W. (2012). ATP-dependent chromatin remodeling in the DNA-damage response. In Epigenetics and Chromatin (Vol. 5, Issue 1).


Miskey, C., Izsvák, Z., Kawakami, K., & Ivics, Z. (2005). DNA transposons in vertebrate functional genomics. In Cellular and Molecular Life Sciences (Vol. 62, Issue 6, pp. 629–641).

Moon, S. bin, Kim, D. Y., Ko, J. H., & Kim, Y. S. (2019). Recent advances in the CRISPR genome editing tool set. In Experimental and Molecular Medicine (Vol. 51, Issue 11). Springer Nature.

Park, J.-U., Tsai, A., Mehrotra, E., Petassi, M. T., Ke, A., Peters, J. E., & Kellogg, E. H. (2021). Structural basis for target-site selection in RNA-guided DNA transposition systems.

Sadofsky, M. J. (2001). The RAG proteins in V(D)J recombination: more than just a nuclease. In SURVEY AND SUMMARY (Vol. 29, Issue 7).

Strecker, J., Ladha, A., Gardner, Z., Schmid-Burgk, J. L., Makarova, K. S., Koonin, E. v., & Zhang, F. (2019). RNA-guided DNA insertion with CRISPR-associated transposases. Science, 364(6448), 48–53.

Suzuki, Y., Chew, M. L., & Suzuki, Y. (2012). Role of host-encoded proteins in restriction of retroviral integration. In Frontiers in Microbiology (Vol. 3, Issue JUN). Frontiers Research Foundation.

van Kampen, S. J., & van Rooij, E. (2019). CRISPR Craze to Transform Cardiac Biology. In Trends in Molecular Medicine (Vol. 25, Issue 9, pp. 791–802). Elsevier Ltd.

Weinstock, D. M., & Jasin, M. (2006). Alternative Pathways for the Repair of RAG-Induced DNA Breaks. Molecular and Cellular Biology, 26(1), 131–139.

Yakovenko, I., Agronin, J., Smith, L. C., & Oren, M. (2021). Guardian of the Genome: An Alternative RAG/Transib Co-Evolution Hypothesis for the Origin of V(D)J Recombination. Frontiers in Immunology, 12.

Yant, S. R., & Kay, M. A. (2003). Nonhomologous-End-Joining Factors Regulate DNA Repair Fidelity during Sleeping Beauty Element Transposition in Mammalian Cells . Molecular and Cellular Biology, 23(23), 8505–8518.

Yoshinaga, N., Shindo, K., Matsui, Y., Takiuchi, Y., Fukuda, H., Nagata, K., Shirakawa, K., Kobayashi, M., Takeda, S., & Takaori-Kondo, A. (2019). A screening for DNA damage response molecules that affect HIV-1 infection. Biochemical and Biophysical Research Communications, 513(1), 93–98.

Zhao, S., Jiang, E., Chen, S., Gu, Y., Shangguan, A. J., Lv, T., Luo, L., & Yu, Z. (2016). PiggyBac transposon vectors: The tools of the human gene encoding. In Translational Lung Cancer Research (Vol. 5, Issue 1, pp. 120–125). AME Publishing Company.



How to Cite

Pyarali, N., & Broad, A. (2022). Investigating the DNA Damage Response Elicited by Transposable Element Integration. Journal of Student Research, 11(2).



HS Review Articles