Modeling OxLDL Epigenetic Innate Immune Training of Monocytes in Early Atherosclerotic Plaques

Authors

  • Jenna Houle Santa Clara High School
  • Kate Rossner Santa Clara High School

DOI:

https://doi.org/10.47611/jsrhs.v11i1.2346

Keywords:

Atherosclerosis, Mathematical modeling, Partial differential equation, Innate immunity, Macrophages, Epigenetics

Abstract

Atherosclerotic cardiovascular disease (atherosclerosis) is the leading cause of death worldwide. While atherogenesis is generally well understood, the sustained inflammation seen in some rapidly developing plaques remains largely unexplained. Recent research in epigenetics reports chromatin remodeling with significant pro-atherogenic effects in human monocytes exposed to oxLDL. Data collected from isolated monocytes in vitro suggests that epigenetic innate immune training may explain the observed persistent inflammatory state, however, research has yet to quantify the effects of training on early plaque dynamics. In the present study, I employ a partial differential equation and agent based mathematical model to describe key markers of atherogenesis in a system with “untrained” or “trained” monocytes. Time dependent solutions of the model suggest that innate immune training with oxLDL produces a pronounced pro-inflammatory response which has significant effects on the counts of plaque macrophages and foam cells. These results provide further support for the targeting of the epigenome in the treatment of atherosclerosis.

Downloads

Download data is not yet available.

Author Biography

Kate Rossner, Santa Clara High School

Advisor

References or Bibliography

Pahwa R. Atherosclerosis [Internet]. StatPearls [Internet]. U.S. National Library of Medicine; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507799/

Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nature reviews immunology. 2006 Jul;6(7):508-19. doi:10.1038/nri1882

Chalmers AD, Cohen A, Bursill CA, Myerscough MR. Bifurcation and dynamics in a mathematical model of early atherosclerosis. Journal of mathematical biology. 2015 Dec;71(6):1451-80. doi:10.1007/s00285-015-0864-5

Yu XH, Fu YC, Zhang DW, Yin K, Tang CK. Foam cells in atherosclerosis. Clinica chimica acta. 2013 Sep 23;424:245-52. doi:10.1016/j.cca.2013.06.006

Dhawan SS, Avati Nanjundappa RP, Branch JR, Taylor WR, Quyyumi AA, Jo H, McDaniel MC, Suo J, Giddens D, Samady H. Shear stress and plaque development. Expert review of cardiovascular therapy. 2010 Apr 1;8(4):545-56. doi:10.1586/erc.10.28

Nicholson AC, Frieda S, Pearce A, Silverstein RL. Oxidized LDL binds to CD36 on human monocyte-derived macrophages and transfected cell lines: evidence implicating the lipid moiety of the lipoprotein as the binding site. Arteriosclerosis, thrombosis, and vascular biology. 1995 Feb;15(2):269-75. doi:10.1161/01.atv.15.2.269

Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell. 1998 Apr 17;93(2):229-40. doi:10.1016/s0092-8674(00)81574-3

Geeraert B, De Keyzer D, Davey PC, Crombé F, Benhabilès N, Holvoet P. Oxidized low‐density lipoprotein‐induced expression of ABCA1 in blood monocytes precedes coronary atherosclerosis and is associated with plaque complexity in hypercholesterolemic pigs. Journal of Thrombosis and Haemostasis. 2007 Dec;5(12):2529-36. doi: 10.1111/j.1538-7836.2007.02786.x

Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arteriosclerosis, thrombosis, and vascular biology. 2010 Feb 1;30(2):139-43. doi:10.1161/ATVBAHA.108.179283

Sankaranarayanan S, Oram JF, Asztalos BF, Vaughan AM, Lund-Katz S, Adorni MP, Phillips MC, Rothblat GH. Effects of acceptor composition and mechanism of ABCG1-mediated cellular free cholesterol efflux. Journal of lipid research. 2009 Feb 1;50(2):275-84. doi:10.1194/jlr.M800362-JLR200

Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M, Cartland S, Packianathan M, Kritharides L, Jessup W. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arteriosclerosis, thrombosis, and vascular biology. 2006 Mar 1;26(3):534-40. doi:10.1161/01.ATV.0000200082.58536.e1

Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM. A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Molecular cell. 2001 Jan 1;7(1):161-71. doi:10.1016/s1097-2765(01)00164-2

Chawla A. Control of macrophage activation and function by PPARs. Circulation research. 2010 May 28;106(10):1559-69. doi:10.1161/CIRCRESAHA.110.216523

Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N, Brewer HB. PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nature medicine. 2001 Jan;7(1):53-8. doi:10.1038/83348

Bekkering S, Quintin J, Joosten LA, van der Meer JW, Netea MG, Riksen NP. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arteriosclerosis, thrombosis, and vascular biology. 2014 Aug;34(8):1731-8. doi:10.1161/ATVBAHA.114.303887

Christ A, Günther P, Lauterbach MA, Duewell P, Biswas D, Pelka K, Scholz CJ, Oosting M, Haendler K, Baßler K, Klee K. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell. 2018 Jan 11;172(1-2):162-75. doi:10.1016/j.cell.2017.12.013

Christ A, Bekkering S, Latz E, Riksen NP. Long-term activation of the innate immune system in atherosclerosis. InSeminars in Immunology 2016 Aug 1 (Vol. 28, No. 4, pp. 384-393). Academic Press. doi:10.1016/j.smim.2016.04.004

Schnack L, Sohrabi Y, Lagache SM, Kahles F, Bruemmer D, Waltenberger J, Findeisen HM. Mechanisms of trained innate immunity in oxLDL primed human coronary smooth muscle cells. Frontiers in immunology. 2019 Jan 23;10:13. doi:10.3389/fimmu.2019.00013

Delves PJ, Roitt IM. The immune system. New England journal of medicine. 2000 Jul 6;343(1):37-49. doi:10.1056/NEJM200007063430107

Hoebe K, Janssen E, Beutler B. The interface between innate and adaptive immunity. Nature immunology. 2004 Oct;5(10):971-4. doi:10.1038/ni1004-971

Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, Cheng SC, Ratter J, Berentsen K, van der Ent MA, Sharifi N. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. science. 2014 Sep 26;345(6204). doi:10.1126/science.1251086

van der Heijden CD, Noz MP, Joosten LA, Netea MG, Riksen NP, Keating ST. Epigenetics and trained immunity. Antioxidants & redox signaling. 2018 Oct 10;29(11):1023-40. doi:10.1089/ars.2017.7310

Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annual review of biochemistry. 2009 Jul 7;78:273-304. doi:10.1146/annurev.biochem.77.062706.153223

Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S, Jacobs C, van Loenhout J, de Jong D, Stunnenberg HG, Xavier RJ. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proceedings of the National Academy of Sciences. 2012 Oct 23;109(43):17537-42. doi:10.1073/pnas.1202870109

Kleinnijenhuis J, Quintin J, Preijers F, Benn CS, Joosten LA, Jacobs C, Van Loenhout J, Xavier RJ, Aaby P, Van Der Meer JW, Van Crevel R. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. Journal of innate immunity. 2014;6(2):152-8. doi:10.1159/000355628

Bekkering S, van den Munckhof I, Nielen T, Lamfers E, Dinarello C, Rutten J, de Graaf J, Joosten LA, Netea MG, Gomes ME, Riksen NP. Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo. Atherosclerosis. 2016 Nov 1;254:228-36. doi:10.1016/j.atherosclerosis.2016.10.019

Eftimie R, Gillard JJ, Cantrell DA. Mathematical models for immunology: current state of the art and future research directions. Bulletin of mathematical biology. 2016 Oct;78(10):2091-134. doi:10.1007/s11538-016-0214-9

Cohen A, Myerscough MR, Thompson RS. Athero-protective effects of High Density Lipoproteins (HDL): An ODE model of the early stages of atherosclerosis. Bulletin of mathematical biology. 2014 May 1;76(5):1117-42. doi:10.1007/s11538-014-9948-4

Ougrinovskaia A, Thompson RS, Myerscough MR. An ODE model of early stages of atherosclerosis: mechanisms of the inflammatory response. Bulletin of mathematical biology. 2010 Aug 1;72(6):1534-61. doi:10.1007/s11538-010-9509-4

Plank MJ, Wall DJ, David T. The role of endothelial calcium and nitric oxide in the localisation of atherosclerosis. Mathematical biosciences. 2007 May 1;207(1):26-39. doi:10.1016/j.mbs.2006.08.017

Ibragimov AI, McNeal CJ, Ritter LR, Walton JR. A mathematical model of atherogenesis as an inflammatory response. Mathematical Medicine and Biology. 2005 Dec 1;22(4):305-33. doi:10.1093/imammb/dqi011

Chalmers AD, Bursill CA, Myerscough MR. Nonlinear dynamics of early atherosclerotic plaque formation may determine the efficacy of high density lipoproteins (HDL) in plaque regression. PloS one. 2017 Nov 21;12(11):e0187674. doi:10.1371/journal.pone.0187674

Michaelis L, Menten ML. Die kinetik der invertinwirkung. Biochem. z. 1913 Feb;49(333-369):352.

Michaelis-Menten Kinetics and Briggs-Haldane Kinetics. Available from: https://depts.washington.edu/wmatkins/ kinetics/michaelis-menten.html

By Thomas Shafee - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=38914698

Falck-Hansen M, Kassiteridi C, Monaco C. Toll-like receptors in atherosclerosis. International journal of molecular sciences. 2013 Jul;14(7):14008-23. doi:10.3390/ijms140714008

Dabagh M, Jalali P, Tarbell JM. The transport of LDL across the deformable arterial wall: the effect of endothelial cell turnover and intimal deformation under hypertension. American Journal of Physiology-Heart and Circulatory Physiology. 2009 Sep;297(3):H983-96. doi:10.1152/ajpheart.00324.2009

Paavola CD, Hemmerich S, Grunberger D, Polsky I, Bloom A, Freedman R, Mulkins M, Bhakta S, McCarley D, Wiesent L, Wong B. Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptor CCR2B. Journal of Biological Chemistry. 1998 Dec 11;273(50):33157-65. doi:10.1074/jbc.273.50.33157

Published

02-28-2022

How to Cite

Houle, J., & Rossner, K. (2022). Modeling OxLDL Epigenetic Innate Immune Training of Monocytes in Early Atherosclerotic Plaques. Journal of Student Research, 11(1). https://doi.org/10.47611/jsrhs.v11i1.2346

Issue

Section

AP Capstone™ Research