Interactions between Plastics, Microplastics, and Microbial Communities

Authors

  • Jingyi Yang Mercer Island High school
  • Dr. Kartik Chandran Mentor, Columbia University

DOI:

https://doi.org/10.47611/jsrhs.v10i4.2342

Keywords:

microplastics, biodegradability, microbial degradation, bioplastic production, impact of microplastics

Abstract

Plastics have been an essential part of life. Each year, over 300 million tons of plastics are being processed each year into other products. However, only a small portion of the plastic gets recycled while up to 79% is discarded into landfills or directly into the natural environment. Microplastics refer to small pieces of plastic less than five millimeters long. Because of their small sizes, microplastics are able to pass through filtration systems and remain in the environment for a longer period of time, harming microorganisms, marine life, animal life, and human life. Microorganisms have the ability to transform microplastics, and there have been numerous studies on the biodegradation of bio-based and fossil based plastics. This paper approaches the interactions of microplastics and microorganisms from three main angles— biodegradation, production, and impacts— by synthesizing and analyzing known information. In particular, biodegradability is linked to physical and chemical structures, while plastic polymers can be broken down into smaller compounds which can be potentially processed through bacterial metabolism to be ultimately mineralized as CO2 . Compared to regular plastic, microplastics are more harmful and impactful to organisms (including humans), especially at the cellular level. The analysis of this paper is a good starting point for the investigation of microplastics and how microbial communities interact with them, however, it brings up further questions and gaps. Regardless, this paper highlights the significance that we devote effort and resources to better enhance the implications on ecological processes and human health. 



Downloads

Download data is not yet available.

References or Bibliography

Abdel-Motaal, F. F.; El-Sayed, M. A.; El-Zayat, S. A.; Ito, S.-I. Biodegradation of Poly (ε-Caprolactone) (PCL) Film and Foam Plastic by Pseudozyma Japonica Sp. Nov., a Novel Cutinolytic Ustilaginomycetous Yeast Species. 3 Biotech 2014, 4 (5), 507–512. https://doi.org/10.1007/s13205-013-0182-9

Alaerts, L.; Augustinus, M.; Van Acker, K. Impact of Bio-Based Plastics on Current Recycling of Plastics. Sustainability 2018, 10 (5), 1487. https://doi.org/10.3390/su10051487.

Bioplastics market data https://www.european-bioplastics.org/market/.

Beachum, L. Dead Sperm Whale Had 220 Pounds of Garbage in Its Stomach, Including Rope, Plastic and Gloves. The Washington Post. December 2, 2019.

Besseling, E.; Wang, B.; Lürling, M.; Koelmans, A. A. Nanoplastic Affects Growth of S. Obliquus and Reproduction of D. Magna. Environmental Science & Technology 2014, 48 (20), 12336–12343. https://doi.org/10.1021/es503001d.

Boethling, R. S.; Sommer, E.; DiFiore, D. Designing Small Molecules for Biodegradability. Chemical Reviews 2007, 107 (6), 2207–2227. https://doi.org/10.1021/cr050952t.

Borunda, A. This whale had more than 88 pounds of plastic in its stomach when it died https://www.nationalgeographic.com/environment/2019/03/whale-dies-88-pounds-plastic-philippines/#close. (accessed Oct 20, 2021).

Browne, M. A.; Dissanayake, A.; Galloway, T. S.; Lowe, D. M.; Thompson, R. C. Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel,Mytilus Edulis(L.). Environmental Science & Technology 2008, 42 (13), 5026–5031. https://doi.org/10.1021/es800249a.

Cacciari, I., Quatrini, P., Zirletta, G., Mincione, E., Vinciguerra, V., Lupattelli, P., & Giovannozzi Sermanni, G. Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. Applied and environmental microbiology 1993, 59(11), 3695–3700. https://doi.org/10.1128/aem.59.11.3695-3700.1993

Chatterjee, Subhankar; Sharma, Shivika. Microplastics in Our Oceans and Marine Health. Field Actions Science Reports. The journal of field actions 2019, No. Special Issue 19, 54–61. https://doi.org/http://journals.openedition.org/factsreports/5257.

Danso, D.; Chow, J.; Streit, W. R. Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Applied and Environmental Microbiology 2019, 85 (19). https://doi.org/10.1128/aem.01095-19.

Darby, R. T.; Kaplan, A. M. Fungal Susceptibility of Polyurethanes. Applied Microbiology 1968, 16 (6), 900–905. https://doi.org/10.1128/am.16.6.900-905.1968.

Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H. Tissue Accumulation of Microplastics in Mice and Biomarker Responses Suggest Widespread Health Risks of Exposure. Scientific Reports 2017, 7 (1). https://doi.org/10.1038/srep46687.

Di, M.; Wang, J. Microplastics in Surface Waters and Sediments of the Three Gorges Reservoir, China. Science of The Total Environment 2018, 616-617, 1620–1627. https://doi.org/10.1016/j.scitotenv.2017.10.150.

Ebbesen, M. F.; Gerke, C.; Hartwig, P.; Hartmann, L. Biodegradable Poly(Amidoamine)S with Uniform Degradation Fragments via Sequence-Controlled Macromonomers. Polymer Chemistry 2016, 7 (46), 7086–7093. https://doi.org/10.1039/C6PY01700B.

Eriksen, M.; Lebreton, L. C. M.; Carson, H. S.; Thiel, M.; Moore, C. J.; Borerro, J. C.; Galgani, F.; Ryan, P. G.; Reisser, J. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 2014, 9 (12), e111913. https://doi.org/10.1371/journal.pone.0111913.

Filiciotto, L.; Rothenberg, G. Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem 2020, 14 (1). https://doi.org/10.1002/cssc.202002044.

Garcia, J. M.; Robertson, M. L. The Future of Plastics Recycling. Science 2017, 358(6365), 870–872. https://doi.org/10.1126/science.aaq0324.

Gewert, B.; Plassmann, M. M.; MacLeod, M. Pathways for Degradation of Plastic Polymers Floating in the Marine Environment. Environmental Science: Processes & Impacts 2015, 17 (9), 1513–1521. https://doi.org/10.1039/c5em00207a.

Geyer, R.; Jambeck, J. R.; Law, K. L. Production, Use, and Fate of All Plastics Ever Made. Science Advances 2017, 3 (7). https://doi.org/10.1126/sciadv.1700782.

Giacomucci, L.; Raddadi, N.; Soccio, M.; Lotti, N.; Fava, F. Polyvinyl Chloride Biodegradation by Pseudomonas Citronellolis and Bacillus Flexus. N. Biotechnol. 2019, 52, 35–41. https://doi.org/10.1016/j.nbt.2019.04.005.

Goff, M.; Ward, P. G.; O’Connor, K. E. Improvement of the Conversion of Polystyrene to Polyhydroxyalkanoate through the Manipulation of the Microbial Aspect of the Process: A Nitrogen Feeding Strategy for Bacterial Cells in a Stirred Tank Reactor. Journal of Biotechnology 2007, 132 (3), 283–286. https://doi.org/10.1016/j.jbiotec.2007.03.016.

Gregory, M. R. Environmental Implications of Plastic Debris in Marine Settings—Entanglement, Ingestion, Smothering, Hangers-On, Hitch-Hiking and Alien Invasions. Philosophical Transactions of the Royal Society B: Biological Sciences 2009, 364 (1526), 2013–2025. https://doi.org/10.1098/rstb.2008.0265.

Grothe, E.; Chisti, Y. Poly(β-Hydroxybutyric Acid) Thermoplastic Production by Alcaligenes Latus: Behavior of Fed-Batch Cultures. Bioprocess Biosyst. Eng. 2000, 22 (5), 441–449. https://doi.org/10.1007/s004490050757.

Gruber, M. M.; Hirschmugl, B.; Berger, N.; Holter, M.; Radulović, S.; Leitinger, G.; Liesinger, L.; Berghold, A.; Roblegg, E.; Birner-Gruenberger, R.; Bjelic-Radisic, V.; Wadsack, C. Plasma Proteins Facilitates Placental Transfer of Polystyrene Particles. Journal of Nanobiotechnology 2020, 18 (1). https://doi.org/10.1186/s12951-020-00676-5.

Harrison, J. P.; Sapp, M.; Schratzberger, M.; Osborn, A. M. Interactions between Microorganisms and Marine Microplastics: A Call for Research. Marine Technology Society Journal 2011, 45 (2), 12–20. https://doi.org/10.4031/mtsj.45.2.2.

Ikura, Y.; Kudo, T. Isolation of a Microorganism Capable of Degrading Poly-(L-Lactide). J. Gen. Appl. Microbiol. 1999, 45 (5), 247–251. https://doi.org/10.2323/jgam.45.247.

Issac, M. N.; Kandasubramanian, B. Effect of Microplastics in Water and Aquatic Systems. Environ. Sci. Pollut. Res. Int. 2021, 28 (16), 19544–19562.

Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K. L. Plastic Waste Inputs from Land into the Ocean. Science 2015, 347 (6223), 768–771. https://doi.org/10.1126/science.1260352.

Jeon, H. J.; Kim, M. N. Isolation of a Thermophilic Bacterium Capable of Low-Molecular-Weight Polyethylene Degradation. Biodegradation 2013, 24(1), 89–98. https://doi.org/10.1007/s10532-012-9560-y

Kale, S.; Keshmukh, A. G.; Dudhare, M.; Patil, V. Microbial Degradation of Plastic - a Review. International Journal of Pharmaceutical Research 2020, 13 (01). https://doi.org/10.31838/ijpr/2021.13.01.245.

Karan, H.; Funk, C.; Grabert, M.; Oey, M.; Hankamer, B. Green Bioplastics as Part of a Circular Bioeconomy. Trends in Plant Science 2019, 24 (3), 237–249. https://doi.org/10.1016/j.tplants.2018.11.010.

Kaufman, H. No Such Place As “Away”: Plastic Pollution in the Oceans, Why We Should Care, and What to Do About It | InterAction Council https://www.interactioncouncil.org/publications/no-such-place-away-plastic-pollution-oceans-why-we-should-care-and-what-do-about-it.

Kolvenbach, B. A.; Helbling, D. E.; Kohler, H.-P. E.; Corvini, P. F-X. Emerging Chemicals and the Evolution of Biodegradation Capacities and Pathways in Bacteria. Current Opinion in Biotechnology 2014, 27, 8–14. https://doi.org/10.1016/j.copbio.2013.08.017.

Kunioka, M.; Ninomiya, F.; Funabashi, M. Biodegradation of Poly(Butylene Succinate) Powder in a Controlled Compost at 58 °c Evaluated by Naturally-Occurring Carbon 14 Amounts in Evolved CO2 Based on the ISO 14855-2 Method. International Journal of Molecular Sciences 2009, 10 (10), 4267–4283. https://doi.org/10.3390/ijms10104267.

Li, C.; Gan, Y.; Dong, J.; Fang, J.; Chen, H.; Quan, Q.; Liu, J. Impact of Microplastics on Microbial Community in Sediments of the Huangjinxia Reservoir—Water Source of a Water Diversion Project in Western China. Chemosphere 2020, 253, 126740. https://doi.org/10.1016/j.chemosphere.2020.126740.

Liu, G.; Jiang, R.; You, J.; Muir, D. C. G.; Zeng, E. Y. Microplastic Impacts on Microalgae Growth: Effects of Size and Humic Acid. Environmental Science & Technology 2019, 54 (3), 1782–1789. https://doi.org/10.1021/acs.est.9b06187.

Lovett, J.; de Bie, F. SUSTAINABLE SOURCING of FEEDSTOCKS for BIOPLASTICS; 2016.

Lu, L.; Luo, T.; Zhao, Y.; Cai, C.; Fu, Z.; Jin, Y. Interaction between Microplastics and Microorganism as Well as Gut Microbiota: A Consideration on Environmental Animal and Human Health. Science of The Total Environment 2019, 667, 94–100. https://doi.org/10.1016/j.scitotenv.2019.02.380.

Luo, K.; Yang, J.; Kopečková, P.; Kopeček, J. Biodegradable Multiblock Poly[N-(2-Hydroxypropyl)Methacrylamide] via Reversible Addition−Fragmentation Chain Transfer Polymerization and Click Chemistry. Macromolecules 2011, 44 (8), 2481–2488. https://doi.org/10.1021/ma102574e.

Machmud, M. N.; Fahmi, R.; Abdullah, R.; Kokarkin, C. Characteristics of Red Algae Bioplastics/Latex Blends under Tension. International Journal of Science and Engineering 2013, 5 (2). https://doi.org/10.12777/ijse.5.2.81-88.

Mohanan, N.; Montazer, Z.; Sharma, P. K.; Levin, D. B. Microbial and Enzymatic Degradation of Synthetic Plastics. Frontiers in Microbiology 2020, 11. https://doi.org/10.3389/fmicb.2020.580709.

Mor, R.; Sivan, A. Biofilm Formation and Partial Biodegradation of Polystyrene by the Actinomycete Rhodococcus Ruber: Biodegradation of Polystyrene: Biodegradation of Polystyrene. Biodegradation 2008, 19 (6), 851–858.

Mughini-Gras, L.; van der Plaats, R. Q. J.; van der Wielen, P. W. J. J.; Bauerlein, P. S.; de Roda Husman, A. M. Riverine Microplastic and Microbial Community Compositions: A Field Study in the Netherlands. Water Research 2021, 192, 116852. https://doi.org/10.1016/j.watres.2021.116852.

Murphy, S. H.; Leeke, G. A.; Jenkins, M. J. A Comparison of the Use of FTIR Spectroscopy with DSC in the Characterisation of Melting and Crystallisation in Polycaprolactone. Journal of Thermal Analysis and Calorimetry 2011, 107 (2), 669–674. https://doi.org/10.1007/s10973-011-1771-7.

NOAA. What are microplastics? https://oceanservice.noaa.gov/facts/microplastics.html.

Nakajima-Kambe, T.; Onuma, F.; Kimpara, N.; Nakahara, T. Isolation and Characterization of a Bacterium Which Utilizes Polyester Polyurethane as a Sole Carbon and Nitrogen Source. FEMS Microbiol. Lett. 1995, 129 (1), 39–42. https://doi.org/10.1016/0378-1097(95)00131-n

Nakanishi, A.; Iritani, K.; Sakihama, Y. Developing Neo-Bioplastics for the Realization of Carbon Sustainable Society. Journal of Nanotechnology and Nanomaterials 2020, 1 (2). https://doi.org/10.33696/Nanotechnol.1.010.

Okey, R. W.; Stensel, H. David. A QSAR-Based Biodegradability Model—a QSBR. Water Research 1996, 30 (9), 2206–2214. https://doi.org/10.1016/0043-1354(96)00098-x.

Onen Cinar, S.; Chong, Z. K.; Kucuker, M. A.; Wieczorek, N.; Cengiz, U.; Kuchta, K. Bioplastic Production from Microalgae: A Review. International Journal of Environmental Research and Public Health 2020, 17 (11), 3842. https://doi.org/10.3390/ijerph17113842.

Parker, L. Plastic pollution facts and information https://www.nationalgeographic.com/environment/article/plastic-pollution.

Perotto, G.; Ceseracciu, L.; Simonutti, R.; Paul, U. C.; Guzman-Puyol, S.; Tran, T.-N.; Bayer, I. S.; Athanassiou, A. Bioplastics from Vegetable Waste via an Eco-Friendly Water-Based Process. Green Chemistry 2018, 20 (4), 894–902. https://doi.org/10.1039/c7gc03368k.

Preusting, H.; Hazenberg, W.; Witholt, B. Continuous Production of Poly(3-Hydroxyalkanoates) by Pseudomonas Oleovorans in a High-Cell-Density, Two-Liquid-Phase Chemostat. Enzyme Microb. Technol. 1993, 15 (4), 311–316. https://doi.org/10.1016/0141-0229(93)90156-V.

Prüst, M.; Meijer, J.; Westerink, R. H. S. The Plastic Brain: Neurotoxicity of Micro- and Nanoplastics. Particle and Fibre Toxicology 2020, 17 (1). https://doi.org/10.1186/s12989-020-00358-y.

Rahman, A.; Sarkar, A.; Yadav, O. P.; Achari, G.; Slobodnik, J. Potential Human Health Risks due to Environmental Exposure to Nano- and Microplastics and Knowledge Gaps: A Scoping Review. Science of The Total Environment 2021, 757, 143872. https://doi.org/10.1016/j.scitotenv.2020.143872.

Reed, C. Plastic Age: How it’s reshaping rocks, oceans and life https://www.newscientist.com/article/mg22530060-200-plastic-age-how-its-reshaping-rocks-oceans-and-life/.

Roch, S.; Friedrich, C.; Brinker, A. Uptake Routes of Microplastics in Fishes: Practical and Theoretical Approaches to Test Existing Theories. Scientific Reports 2020, 10 (1), 1–12. https://doi.org/10.1038/s41598-020-60630-1.

Rogers, K. L.; Carreres‐Calabuig, J. A.; Gorokhova, E.; Posth, N. R. Micro‐By‐Micro Interactions: How Microorganisms Influence the Fate of Marine Microplastics. Limnology and Oceanography Letters 2020, 5 (1), 18–36. https://doi.org/10.1002/lol2.10136.

Royer, S.-J.; Ferrón, S.; Wilson, S. T.; Karl, D. M. Production of Methane and Ethylene from Plastic in the Environment. PLOS ONE 2018, 13 (8), e0200574. https://doi.org/10.1371/journal.pone.0200574.

Sanin, S. L.; Sanin, F. Dilek.; Bryers, J. D. Effect of Starvation on the Adhesive Properties of Xenobiotic Degrading Bacteria. Process Biochemistry 2003, 38 (6), 909–914. https://doi.org/10.1016/s0032-9592(02)00173-5.

Seeley, M. E.; Song, B.; Passie, R.; Hale, R. C. Microplastics Affect Sedimentary Microbial Communities and Nitrogen Cycling. Nature Communications 2020, 11 (1). https://doi.org/10.1038/s41467-020-16235-3.

Shah, A. A.; Kato, S.; Shintani, N.; Kamini, N. R.; Nakajima-Kambe, T. Microbial Degradation of Aliphatic and Aliphatic-Aromatic Co-Polyesters. Applied Microbiology and Biotechnology 2014, 98 (8), 3437–3447. https://doi.org/10.1007/s00253-014-5558-1.

Sivan, A.; Szanto, M.; Pavlov, V. Biofilm Development of the Polyethylene-Degrading Bacterium Rhodococcus Ruber. Applied Microbiology and Biotechnology 2006, 72 (2), 346–352. https://doi.org/10.1007/s00253-005-0259-4.

Suzuki, K.; Mikami, T.; Okawa, Y.; Tokoro, A.; Suzuki, S.; Suzuki, M. Antitumor Effect of Hexa-N-Acetylchitohexaose and Chitohexaose. Carbohydr. Res. 1986, 151, 403–408. https://doi.org/10.1016/s0008-6215(00)90359-8

Tokiwa, Y.; Calabia, B.; Ugwu, C.; Aiba, S. Biodegradability of Plastics. International Journal of Molecular Sciences 2009, 10 (9), 3722–3742. https://doi.org/10.3390/ijms10093722.

Tsang, J. Changing CO2 Levels Require Microbial Coping Strategies https://asm.org/Articles/2019/April/Changing-CO2-Levels-Means-Different-Coping-Strateg.

Vethaak, A. D.; Legler, J. Microplastics and Human Health. Science 2021, 371 (6530), 672–674. https://doi.org/10.1126/science.abe5041.

Wei, R.; Zimmermann, W. Microbial Enzymes for the Recycling of Recalcitrant Petroleum‐Based Plastics: How Far Are We? Microbial Biotechnology 2017, 10 (6), 1308–1322. https://doi.org/10.1111/1751-7915.12710.

Wilkes, R. A.; Aristilde, L. Degradation and Metabolism of Synthetic Plastics and Associated Products ByPseudomonassp.: Capabilities and Challenges. Journal of Applied Microbiology 2017, 123 (3), 582–593. https://doi.org/10.1111/jam.13472.

Wright, S.; Kelly, F. Plastic and Human Health: A Micro Issue? https://scholar.google.com/scholar?q=%2C+Environ.+Sci.+Technol.+51%2C+6634+%282017%29. (accessed Oct 20, 2021).

Wu, B.; Wu, X.; Liu, S.; Wang, Z.; Chen, L. Size-Dependent Effects of Polystyrene Microplastics on Cytotoxicity and Efflux Pump Inhibition in Human Caco-2 cells. Chemosphere 2019, 221, 333–341. https://doi.org/10.1016/j.chemosphere.2019.01.056.

Yang, Y.-F.; Chen, C.-Y.; Lu, T.-H.; Liao, C.-M. Toxicity-Based Toxicokinetic/Toxicodynamic Assessment for Bioaccumulation of Polystyrene Microplastics in Mice. Journal of Hazardous Materials 2019, 366, 703–713. https://doi.org/10.1016/j.jhazmat.2018.12.048.

Yong, C. Q. Y.; Valiyaveetill, S.; Tang, B. L. Toxicity of Microplastics and Nanoplastics in Mammalian Systems. International Journal of Environmental Research and Public Health 2020, 17 (5), 1509. https://doi.org/10.3390/ijerph17051509.

Zhao, J.-H.; Wang, X.-Q.; Zeng, J.; Yang, G.; Shi, F.-H.; Yan, Q. Biodegradation of Poly(Butylene Succinate) in Compost. J. Appl. Polym. Sci. 2005, 97 (6), 2273–2278. https://doi.org/10.1002/app.22009.

Zettler, E. R.; Mincer, T. J.; Amaral-Zettler, L. A. Life in the “Plastisphere”: Microbial Communities on Plastic Marine Debris. Environmental Science & Technology 2013, 47 (13), 7137–7146. https://doi.org/10.1021/es401288x.

van Sebille, E.; Wilcox, C.; Lebreton, L.; Maximenko, N.; Hardesty, B. D.; van Franeker, J. A.; Eriksen, M.; Siegel, D.; Galgani, F.; Law, K. L. A Global Inventory of Small Floating Plastic Debris. Environmental Research Letters 2015, 10 (12), 124006. https://doi.org/10.1088/1748-9326/10/12/124006.

von Moos, N.; Burkhardt-Holm, P.; Köhler, A. Uptake and Effects of Microplastics on Cells and Tissue of the Blue Mussel Mytilus Edulis L. After an Experimental Exposure. Environmental Science & Technology 2012, 46 (20), 11327–11335. https://doi.org/10.1021/es302332w.

Published

11-30-2021

How to Cite

Yang, J., & Chandran, K. (2021). Interactions between Plastics, Microplastics, and Microbial Communities . Journal of Student Research, 10(4). https://doi.org/10.47611/jsrhs.v10i4.2342

Issue

Section

HS Research Articles