Mechanisms of Covid-induced Heart failure


  • Frank Bunks Saint Joseph High School
  • Roel Mercado Mentor, Saint Joseph High School



Heart Failure, Ischemia, Thrombosis, Myocarditis, Inflammatory Mediator, Left Ventricular Dysfunction, Renal Impairment, Septic Shock, Volume Overload, RAAS (Renin-Angiotensin-Aldosterone system), Sympathetic Activation, Stress Cardiomyopathy, ARDS (Acute Respiratory Disorder), Pulmonary Hypertension, Right Heart Failure


Sars-Cov-2 binds to ACE-2 receptor, resulting in excess amount of ACE-1 dependent angiotensin production. Sars-Cov-2 has four stages of symptoms, 80% if symptomatic patients have been shown to only suffer a “mild” disease course, meanwhile 20% endure stage 3, which is characterized by conditions such as ARDS, shock, and multiorgan failure. The binding of Covid to ACE receptors promotes the conversion of angiotensin 1 to angiotensin 2, constricting blood vessels, leading to thrombosis, lack of oxygen, and Ischemia. In Cardiac injury, the Covid receptor becomes represented in the heart, inducing in a pro-inflammatory increase, high cytokine concentrations, myocyte cardiac apoptosis, cardiac arrythmia, cardiac fibrotic tissue, myocarditis, and Heart failure. Cytokine storms associated with production of S1P, TNF activation of MMPs prompts myocardial depression, dilation of LV, and Heart failure. Covid-induced Sepsis corresponds with dysregulated host immune responses, increased pro-inflammatory mediators, fluid leakage, increase in cGMP, LV dysfunction, and arrythmia. Blood clots in the capillaries surrounding the kidneys generate renal impairment. Progression of renal impairment generates a state of systemic inflammation. Increased sodium content in the body results in elevated plasma blood and uncontrolled hypervolemia. Emotional and physical stresses during Sars-Cov-2 induce blood gas changes, angiotensin converting enzyme imbalance, and immune/inflammatory factors. Overactivation of the SNS induces Takotsubo syndrome. In ARDS, fluid leak in the membrane gas exchange region of the lung results in vascular remodeling. Inducing further vascular remodeling as part of the body’s response to hypoxia. The constant vascular remodeling triggers RHF.


Download data is not yet available.

Author Biography

Roel Mercado, Mentor, Saint Joseph High School

Chairman, Science Department. Saint Joseph High School 

References or Bibliography

Colantuoni, A., Martini, R., Caprari, P., Ballestri, M., Capecchi, P. L., Gnasso, A., . . . Caimi, G. (2020). COVID-19 Sepsis and Microcirculation Dysfunction. Frontiers in Physiology, 11. doi:10.3389/fphys.2020.00747

Clinic, C. (n.d.). Heart Failure: Types, Symptoms, Causes & Treatments. Retrieved June 3, 2021, from

L. (n.d.). The Pericardium. Retrieved from

M. (n.d.). Chambers and valves of the heart. Retrieved July 24, 2021, from

Ayres, J.S. A metabolic handbook for the COVID-19 pandemic. Nat Metab 2, 572–585 (2020).

Lupi, L., Adamo, M., Inciardi, R. M., & Metra, M. (2020). ACE2 down-regulation may contribute to the increased thrombotic risk in COVID-19. European Heart Journal, 41(33), 3200-3200. doi:10.1093/eurheartj/ehaa583

Clinic, C. (n.d.). Deep Vein Thrombosis (DVT); Symptoms, Causes, Treatment & Prevention. Retrieved June 3, 2021, from

Rodriguez, B., Trayanova, N., & Noble, D. (2006). Modeling Cardiac Ischemia. Annals of the New York Academy of Sciences, 1080(1), 395-414. doi:10.1196/annals.1380.029

Blaisdell FW, Steele M, Allen RE. Management of acute lower extremity arterial ischemia due to embolism and thrombosis. Surgery. 1978 Dec;84(6):822-34. PMID: 715701.

Vitiello, A., & Ferrara, F. (2020). Pharmacological agents to therapeutic treatment of cardiac injury caused by Covid-19. Life Sciences, 262, 118510. doi:10.1016/j.lfs.2020.118510

Fara, A., Mitrev, Z., Rosalia, R. A., & Assas, B. M. (2020). Cytokine storm and COVID-19: A chronicle of pro-inflammatory cytokines. Open Biology, 10(9), 200160. doi:10.1098/rsob.200160

Al, A. N. (2020). Cardiac and arrhythmic complications in Covid-19 patients. Authorea. doi:10.22541/au.158594433.36475644

Matsumori, A. (2000). Cytokines and Heart Failure: Pathophysiological Roles and Therapeutic Implications. Heart Failure, 35-45. doi:10.1007/978-4-431-68331-5_3

Meacci, E., Garcia-Gil, M., & Pierucci, F. (2020). SARS-CoV-2 Infection: A Role for S1P/S1P Receptor Signaling in the Nervous System? International Journal of Molecular Sciences, 21(18), 6773. doi:10.3390/ijms21186773

Mann, D. L. (2001). The Role of Inflammatory Mediators in the Failing Heart. Developments in Cardiovascular Medicine The Role of Inflammatory Mediators in the Failing Heart, 1-1. doi:10.1007/978-1-4615-1449-7_1

Guo BB, Bellingham SA, Hill AF. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem. 2015 Feb 6;290(6):3455-67. doi: 10.1074/jbc.M114.605253. Epub 2014 Dec 10. PMID: 25505180; PMCID: PMC4319014.

Alliance, S. (2020, March 26). The Connection Between COVID-19, Sepsis, and Sepsis Survivors. Retrieved June 3, 2021, from

Shappell, C. N., Klompas, M., & Rhee, C. (2020). Does Severe Acute Respiratory Syndrome Coronavirus 2 Cause Sepsis?. Critical care medicine, 48(12), 1707–1709.

Angus, D. C., & Poll, T. V. (2013). Severe Sepsis and Septic Shock. The New England Journal of Medicine. doi:10.1056/NEJMra1208623

NHS. "Septic Shock Symptoms and Treatment." Illnesses & Conditions | NHS Inform. February 10, 2020. Accessed June 03, 2021.

Huang, S.J., Nalos, M. & McLean, A.S. Is early ventricular dysfunction or dilatation associated with lower mortality rate in adult severe sepsis and septic shock? A meta-analysis. Crit Care 17, R96 (2013).

Gamcrlidze MM, Intskirveli NA, Vardosanidze KD, et al. Vasoplegia in septic shock (review). Georgian Medical News. 2015 Feb(239):56-62.

Sharawy, Nivin. "Vasoplegia in Septic Shock: Do We Really Fight the Right Enemy?" ScienceDirect, February 2014. Accessed June 3, 2021. doi:10.1016/j.jcrc.2013.08.021.

Stasch, J. P., Pacher, P., & Evgenov, O. V. (2011). Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation, 123(20), 2263–2273.

1. Burgdorff A-M, Bucher M, Schumann J. Vasoplegia in patients with sepsis and septic shock: pathways and mechanisms. Journal of International Medical Research. April 2018:1303-1310. doi:10.1177/0300060517743836

Sperati, C. J. (n.d.). Coronavirus: Kidney Damage Caused by COVID-19. Retrieved June 3, 2021, from causes blood clots,kidney and impair its function

Ebah, L. M., Wiig, H., Dawidowska, I., Otoole, C., Summers, A., Nikam, M., . . . Mitra, S. (2013). Subcutaneous interstitial pressure and volume characteristics in renal impairment associated with edema. Kidney International, 84(5), 980-988. doi:10.1038/ki.2013.208

Nisbeth U, Hällgren R, Eriksson O, Danielson BG. Endotoxemia in chronic renal failure. Nephron. 1987;45(2):93-7. doi: 10.1159/000184086. PMID: 3550501.

F. (n.d.). Hypervolemia and Signs of Fluid Overload. Retrieved June 3, 2021, from

Hassan, M. O., Duarte, R., Dix-Peek, T., Vachiat, A., Naidoo, S., Dickens, C., . . . Naicker, S. (2016). Correlation between volume overload, chronic inflammation, and left ventricular dysfunction in chronic kidney disease patients. Clinical Nephrology, 86(S1), 131-135. doi:10.5414/cnp86s127

Sperati, C. (n.d.). Coronavirus: Kidney Damage Caused by COVID-19. Retrieved June 3, 2021, from

Porzionato, A., Emmi, A., Barbon, S., Boscolo‐Berto, R., Stecco, C., Stocco, E., . . . Caro, R. D. (2020). Sympathetic activation: A potential link between comorbidities and COVID‐19. The FEBS Journal, 287(17), 3681-3688. doi:10.1111/febs.15481

Sverrisdóttir, Y. B., Schultz, T., Omerovic, E., & Elam, M. (2012). Sympathetic nerve activity in stress-induced cardiomyopathy. Clinical autonomic research : official journal of the Clinical Autonomic Research Society, 22(6), 259–264.

Wittstein, I. S. (2016). The Sympathetic Nervous System in the Pathogenesis of Takotsubo Syndrome. ResearchGate.

Batah, S. S., & Fabro, A. T. (2021). Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians. Respiratory Medicine, 176, 106239. doi:10.1016/j.rmed.2020.106239

C. (2019, December 03). Pulmonary Hypertension. Retrieved June 3, 2021, from

Pak, O., Aldashev, A., Welsh, D., & Peacock, A. (2007). The effects of hypoxia on the cells of the pulmonary vasculature. European Respiratory Journal, 30(2), 364-372. doi:10.1183/09031936.00128706

Bogaard, H., Abe, K., Noordegraaf, A., & Voelkel, N. (2009). The Right Ventricle Under Pressure: Cellular and Molecular Mechanisms of Right-Heart Failure in Pulmonary Hypertension. ScienceDirect. doi:

Guarracino F, Cariello C, Danella A, Doroni L, Lapolla F, Vullo C, Pasquini C, Stefani M. Right ventricular failure: physiology and assessment. Minerva Anestesiol. 2005 Jun;71(6):307-12. PMID: 15886593.



How to Cite

Bunks, F., & Mercado, R. . (2021). Mechanisms of Covid-induced Heart failure. Journal of Student Research, 10(3).



HS Review Articles