Circadian Rhythm, Energy Metabolism, and the Gut Microbiome: a Review

Authors

  • Bailey Vergara American Heritage School Plantation
  • Leya Joykutty American Heritage School Plantation

DOI:

https://doi.org/10.47611/jsrhs.v10i3.1602

Keywords:

circadian rhythm, energy metabolism, intestinal microbiome, gut microbiome

Abstract

This review discussed the interrelationship between the circadian rhythm of the host and of the intestinal microbiome and the implications of this new field on energy metabolism, specifically implications relating to obesity. Circadian rhythm, or the 24-hour system that bodies use to expect and to increase receptivity to certain factors in the environment, is present in almost every organ and system. However, the data that this review utilized relates mainly to the intestinal microbiome: a group of bacteria, yeasts, and viruses that inhabit the colon, with this review’s focus placed on bacteria. This interrelationship is mainly discussed through possible effects of circadian disruption and through an analysis of different methods by which the circadian rhythm of the host and the rhythm of the microbiome interact. TRF, or time-restricted feeding, has been identified as one of the potential methods to reduce the negative consequences of circadian dysregulation on metabolic processes, and various related studies were discussed in-depth. Data from four databases were analyzed to produce a variety of both experimental and review papers. All papers that related to the topic under review were thoroughly analyzed and incorporated into the review.

Downloads

Download data is not yet available.

References or Bibliography

Alp Avcı, G. (2014). Bile Salts Deconjugation Using Microencapsulated Lactic Acid Bacteria Isolated from Handmade Yogurt. Journal of Food and Nutrition Research, 2(7), 340-343. https://doi.org/10.12691/jfnr-2-7-2

Archer, S. N., Laing, E. E., Möller-Levet, C. S., van der Veen, D. R., Bucca, G., Lazar, A. S., Santhi, N., Slak, A., Kabiljo, R., von Schantz, M., Smith, C. P., & Dijk, D.-J. (2014). Mistimed sleep disrupts circadian regulation of the human transcriptome. Proceedings of the National Academy of Sciences, 111(6), E682-E691. https://doi.org/10.1073/pnas.1316335111

Bass, J., & Takahashi, J. S. (2010). Circadian Integration of Metabolism and Energetics. Science, 330(6009), 1349-1354. https://doi.org/10.1126/science.1195027

Bo, S., Fadda, M., Castiglione, A., Ciccone, G., De Francesco, A., Fedele, D., Guggino, A., Parasiliti Caprino, M., Ferrara, S., Vezio Boggio, M., Mengozzi, G., Ghigo, E., Maccario, M., & Broglio, F. (2015). Is the timing of caloric intake associated with variation in diet-induced thermogenesis and in the metabolic pattern? A randomized cross-over study. International Journal of Obesity, 39(12), 1689-1695. https://doi.org/10.1038/ijo.2015.138

Deaver, J. A., Eum, S. Y., & Toborek, M. (2018). Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00737

Gil-Lozano, M., Mingomataj, E. L., Wu, W. K., Ridout, S. A., & Brubaker, P. L. (2014). Circadian Secretion of the Intestinal Hormone GLP-1 by the Rodent L Cell. Diabetes, 63(11), 3674-3685. https://doi.org/10.2337/db13-1501

Gonnissen, H. K., Rutters, F., Mazuy, C., Martens, E. A., Adam, T. C., & Westerterp-Plantenga, M. S. (2012). Effect of a phase advance and phase delay of the 24-h cycle on energy metabolism, appetite, and related hormones. The American Journal of Clinical Nutrition, 96(4), 689-697. https://doi.org/10.3945/ajcn.112.037192

Govindarajan, K., MacSharry, J., Casey, P. G., Shanahan, F., Joyce, S. A., & Gahan, C. G. M. (2016). Unconjugated Bile Acids Influence Expression of Circadian Genes: A Potential Mechanism for Microbe-Host Crosstalk. PLOS ONE, 11(12), e0167319. https://doi.org/10.1371/journal.pone.0167319

Jakubowicz, D., Barnea, M., Wainstein, J., & Froy, O. (2013). High Caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity, 21(12), 2504-2512. https://doi.org/10.1002/oby.20460

Jumpertz, R., Le, D. S., Turnbaugh, P. J., Trinidad, C., Bogardus, C., Gordon, J. I., & Krakoff, J. (2011). Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. The American Journal of Clinical Nutrition, 94(1), 58-65. https://doi.org/10.3945/ajcn.110.010132

Leone, V., Gibbons, S., Martinez, K., Hutchison, A., Huang, E., Cham, C., Pierre, J., Heneghan, A., Nadimpalli, A., Hubert, N., Zale, E., Wang, Y., Huang, Y., Theriault, B., Dinner, A., Musch, M., Kudsk, K., Prendergast, B., Gilbert, J., & Chang, E. (2015). Effects of Diurnal Variation of Gut Microbes and High-Fat Feeding on Host Circadian Clock Function and Metabolism. Cell Host & Microbe, 17(5), 681-689. https://doi.org/10.1016/j.chom.2015.03.006

Liang, X., & FitzGerald, G. A. (2017). Timing the Microbes: The Circadian Rhythm of the Gut Microbiome. Journal of Biological Rhythms, 32(6), 505-515. https://doi.org/10.1177/0748730417729066

Liu, Z., Wei, Z.-Y., Chen, J., Chen, K., Mao, X., Liu, Q., Sun, Y., Zhang, Z., Zhang, Y., Dan, Z., Tang, J., Qin, L., Chen, J.-H., & Liu, X. (2020). Acute Sleep-Wake Cycle Shift Results in Community Alteration of Human Gut Microbiome. MSphere, 5(1). https://doi.org/10.1128/mSphere.00914-19

Matenchuk, B. A., Mandhane, P. J., & Kozyrskyj, A. L. (2020). Sleep, circadian rhythm, and gut microbiota. Sleep Medicine Reviews, 53, 101340. https://doi.org/10.1016/j.smrv.2020.101340

Moller-Levet, C. S., Archer, S. N., Bucca, G., Laing, E. E., Slak, A., Kabiljo, R., Lo, J. C. Y., Santhi, N., von Schantz, M., Smith, C. P., & Dijk, D.-J. (2013). Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proceedings of the National Academy of Sciences, 110(12), E1132-E1141. https://doi.org/10.1073/pnas.1217154110

Parkar, S., Kalsbeek, A., & Cheeseman, J. (2019). Potential Role for the Gut Microbiota in Modulating Host Circadian Rhythms and Metabolic Health. Microorganisms, 7(2), 41. https://doi.org/10.3390/microorganisms7020041

Perry, R. J., Peng, L., Barry, N. A., Cline, G. W., Zhang, D., Cardone, R. L., Petersen, K. F., Kibbey, R. G., Goodman, A. L., & Shulman, G. I. (2016). Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature, 534(7606), 213-217. https://doi.org/10.1038/nature18309

RÁCZ, B., DUŠKOVÁ, M., STÁRKA, L., HAINER, V., & KUNEŠOVÁ, M. (2018). Links Between the Circadian Rhythm, Obesity and the Microbiome. Physiological Research, S409-S420. https://doi.org/10.33549/physiolres.934020

Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G., Gasbarrini, A., & Mele, M. (2019). What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7(1), 14. https://doi.org/10.3390/microorganisms7010014

Shan, Z., Li, Y., Zong, G., Guo, Y., Li, J., Manson, J. E., Hu, F. B., Willett, W. C., Schernhammer, E. S., & Bhupathiraju, S. N. (2018). Rotating night shift work and adherence to unhealthy lifestyle in predicting risk of type 2 diabetes: Results from two large US cohorts of female nurses. BMJ, k4641. https://doi.org/10.1136/bmj.k4641

Society for Science and the Public (2019-20). International Science and Engineering Fair 2019-20: International Rules & Guidelines. Washington, DC: Society for Science and the Public.

Tahara, Y., Yamazaki, M., Sukigara, H., Motohashi, H., Sasaki, H., Miyakawa, H., Haraguchi, A., Ikeda, Y., Fukuda, S., & Shibata, S. (2018). Gut Microbiota-Derived Short Chain Fatty Acids Induce Circadian Clock Entrainment in Mouse Peripheral Tissue. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-19836-7

Thaiss, C., Zeevi, D., Levy, M., Zilberman-Schapira, G., Suez, J., Tengeler, A., Abramson, L., Katz, M., Korem, T., Zmora, N., Kuperman, Y., Biton, I., Gilad, S., Harmelin, A., Shapiro, H., Halpern, Z., Segal, E., & Elinav, E. (2014). Transkingdom Control of Microbiota Diurnal Oscillations Promotes Metabolic Homeostasis. Cell, 159(3), 514-529. https://doi.org/10.1016/j.cell.2014.09.048

Thaiss, C. A. (2018). Microbiome dynamics in obesity. Science, 362(6417), 903-904. https://doi.org/10.1126/science.aav6870

Thaiss, C. A., Levy, M., Korem, T., Dohnalová, L., Shapiro, H., Jaitin, D. A., David, E., Winter, D. R., Gury-BenAri, M., Tatirovsky, E., Tuganbaev, T., Federici, S., Zmora, N., Zeevi, D., Dori-Bachash, M., Pevsner-Fischer, M., Kartvelishvily, E., Brandis, A., Harmelin, A., . . . Elinav, E. (2016). Microbiota Diurnal Rhythmicity Programs Host Transcriptome Oscillations. Cell, 167(6), 1495-1510.e12. https://doi.org/10.1016/j.cell.2016.11.003

Voigt, R.M., Forsyth, C.B., Green, S.J., Engen, P.A., & Keshavarzian, A. (2016). Circadian Rhythm and the Gut Microbiome. International Review of Neurobiology, 131, 193-205. https://doi.org/10.1016/bs.irn.2016.07.002

Westerterp-Plantenga, M. S. (2016). Sleep, circadian rhythm and body weight: Parallel developments. Proceedings of the Nutrition Society, 75(4), 431-439. https://doi.org/10.1017/S0029665116000227

Zarrinpar, A., Chaix, A., & Panda, S. (2016). Daily Eating Patterns and Their Impact on Health and Disease. Trends in Endocrinology & Metabolism, 27(2), 69-83. https://doi.org/10.1016/j.tem.2015.11.007

Zarrinpar, A., Chaix, A., Yooseph, S., & Panda, S. (2014). Diet and Feeding Pattern Affect the Diurnal Dynamics of the Gut Microbiome. Cell Metabolism, 20(6), 1006-1017. https://doi.org/10.1016/j.cmet.2014.11.008

Published

10-10-2021

How to Cite

Vergara, B., & Joykutty, L. (2021). Circadian Rhythm, Energy Metabolism, and the Gut Microbiome: a Review. Journal of Student Research, 10(3). https://doi.org/10.47611/jsrhs.v10i3.1602

Issue

Section

HS Review Articles