A review of the primary nutritional and environmental factors associated with Parkinson’s disease


  • Eleanor Considine Skyline Senior High School
  • Lucy Yin Aragon High School
  • Prof. Mitra Hartmann Northwestern University




Parkinson's disease, Vagus nerve, Dairy, Nicotine, Coffee, Tea, Caffeine, Pesticides, Silymarin, Gut-brain axis, Alpha-synuclein, Lewy bodies, Neurodegenerative, Vagotomy, Urate


Parkinson’s disease is a progressive nervous system disorder that produces both motor and nonmotor symptoms. This literature review begins by examining evidence for several possible origins for the disease:  does it begin in the brain and progress to the gut, or vice versa, or does it begin in both places concurrently?  Next, we examine several environmental factors that have been shown to either increase or decrease risk of Parkinson’s disease. These are primarily nutritional factors, specifically caffeine, nicotine, and dairy products. Studies in both animals and humans provide weak evidence that increased consumption of low fat dairy is associated with an increased risk of Parkinson’s disease development. Additionally, there is strong evidence that nicotine has a neuroprotective effect which also lowers the risk.  Finally, there is similarly strong evidence that caffeine exerts neuroprotective effects which lower the overall risk of developing Parkinson’s disease.


Download data is not yet available.

References or Bibliography

Abbott, R. D., Ross, G. W., Petrovitch, H., Masaki, K. H., Launer, L. J., Nelson, J. S., . . . Tanner, C. M. (2016). Midlife milk consumption and substantia nigra neuron density at death. Neurology, 86(6), 512-519. doi:10.1212/wnl.0000000000002254

Ascherio, A., & Schwarzschild, M. A. (2016). The epidemiology of Parkinson's disease: risk factors and prevention. Lancet Neurology, 15(12), 1255-1270. Retrieved from ://WOS:000386315700021

Baluchnejadmojarad, T., Roghani, M., & Mafakheri, M. (2010). Neuroprotective effect of silymarin in 6-hydroxydopamine hemi-parkinsonian rat: Involvement of estrogen receptors and oxidative stress. Neuroscience Letters, 480(3), 206-210. doi:10.1016/j.neulet.2010.06.038

Belvisi, D., Pellicciari, R., Fabbrini, G., Tinazzi, M., Berardelli, A., & Defazio, G. (2020). Modifiable risk and protective factors in disease development, progression and clinical subtypes of Parkinson's disease: What do prospective studies suggest? Neurobiology of Disease, 134. doi:10.1016/j.nbd.2019.104671

Bobermin, L. D., Roppa, R. H. A., & Quincozes-Santos, A. (2019). Adenosine receptors as a new target for resveratrol-mediated glioprotection. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1865(3), 634-647. doi:10.1016/j.bbadis.2019.01.004

Borghammer, P., & Van Den Berge, N. (2019). Brain-First versus Gut-First Parkinson's Disease: A Hypothesis. Journal of Parkinsons Disease, 9, S281-S295. doi:10.3233/jpd-191721

Boulos, C., Yaghi, N., El Hayeck, R., Heraoui, G., & Fakhoury-Sayegh, N. (2019). Nutritional Risk Factors, Microbiota and Parkinson's Disease: What Is the Current Evidence? Nutrients, 11(8). doi:10.3390/nu11081896

Braak, H., Rub, U., Gai, W. P., & Del Tredici, K. (2003). Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. Journal of Neural Transmission, 110(5), 517-536. doi:10.1007/s00702-002-0808-2

Cabezudo, D., Baekelandt, V., & Lobbestael, E. (2020). Multiple-Hit Hypothesis in Parkinson's Disease: LRRK2 and Inflammation. Frontiers in Neuroscience, 14, 8. doi:10.3389/fnins.2020.00376

Chade, A. R., Kasten, M., & Tanner, C. M. (2006). Nongenetic causes of Parkinson's disease. Journal of Neural Transmission-Supplement(70), 147-151. Retrieved from ://WOS:000240329000024

Chen, H. L., & Marder, K. (2016). Milk consumption and the risk of nigral degeneration. Neurology, 86(6), 496-497. doi:10.1212/wnl.0000000000002268

Chen, H. L., O'Reilly, E., McCullough, M. L., Rodriguez, C., Schwarzschild, M. A., Calle, E. E., . . . Ascherio, A. (2007). Consumption of dairy products and risk of Parkinson's disease. American Journal of Epidemiology, 165(9), 998-1006. doi:10.1093/aje/kwk089

Chen, H. L., Zhang, S. M. M., Hernan, M. A., Willett, W. C., & Ascherio, A. (2002). Diet and Parkinson's disease: A potential role of dairy products in men. Annals of Neurology, 52(6), 793-801. doi:10.1002/ana.10381

Chen, J. F., & Cunha, R. A. (2020). The belated US FDA approval of the adenosine A(2A) receptor antagonist istradefylline for treatment of Parkinson's disease. Purinergic Signalling, 16(2), 167-174. doi:10.1007/s11302-020-09694-2

de Lau, L. M. L., Koudstaal, P. J., Hofman, A., & Breteler, M. M. B. (2005). Serum uric acid levels and the risk of Parkinson disease. Annals of Neurology, 58(5), 797-800. doi:10.1002/ana.20663

de Oliveira, D. R., Schaffer, L. F., Busanello, A., Barbosa, C. P., Peroza, L. R., de Freitas, C. M., . . . Fachinetto, R. (2015). Silymarin has antioxidant potential and changes the activity of Na+/K+-ATPase and monoamine oxidase in vitro. Industrial Crops and Products, 70, 347-355. doi:10.1016/j.indcrop.2015.03.060

Devi, K. P., Malar, D. S., Braidy, N., Nabavi, S. M., & Nabavi, S. F. (2017). A Mini Review on the Chemistry and Neuroprotective Effects of Silymarin. Current Drug Targets, 18(13), 1529-1536. doi:10.2174/1389450117666161227125121

Dhiman, P., Malik, N., & Khatkar, A. (2018). 3D-QSAR and in-silico Studies of Natural Products and Related Derivatives as Monoamine Oxidase Inhibitors. Current Neuropharmacology, 16(6), 881-900. doi:10.2174/1570159x15666171128143650

Domenici, M. R., Ferrante, A., Martire, A., Chiodi, V., Pepponi, R., Tebano, M. T., & Popoli, P. (2019). Adenosine A(2A) receptor as potential therapeutic target in neuropsychiatric disorders. Pharmacological Research, 147. doi:10.1016/j.phrs.2019.104338

Dow, C. T. (2014). M. paratuberculosis and Parkinson's disease - Is this a trigger. Medical Hypotheses, 83(6), 709-712. doi:10.1016/j.mehy.2014.09.025

Dow, C. T., & Sechi, L. A. (2019). Cows Get Crohn's Disease and They're Giving Us Diabetes. Microorganisms, 7(10). doi:10.3390/microorganisms7100466

Faraone, I., Rai, D. K., Russo, D., Chiummiento, L., Fernandez, E., Choudhary, A., & Milella, L. (2019). Antioxidant, Antidiabetic, and Anticholinesterase Activities and Phytochemical Profile of Azorella glabra Wedd. Plants-Basel, 8(8). doi:10.3390/plants8080265

Farkhondeh, T., Pourbagher-Shahri, A. M., Ashrafizadeh, M., Folgado, S. L., Rajabpour-Sanati, A., Khazdair, M. R., & Samarghandian, S. (2020). Green tea catechins inhibit microglial activation which prevents the development of neurological disorders. Neural Regeneration Research, 15(10), 1792-1798. doi:10.4103/1673-5374.280300

Faro, L. R. F., Justo, L. A., Alfonso, M., & Duran, R. (2020). Possible synergies between isatin, an endogenous MAO inhibitor, and antiparkinsonian agents on the dopamine release from striatum of freely moving rats. Neuropharmacology, 171. doi:10.1016/j.neuropharm.2020.108083

Farzaei, M. H., Bahramsoltani, R., Abbasabadi, Z., Braidy, N., & Nabavi, S. M. (2019). Role of green tea catechins in prevention of age-related cognitive decline: Pharmacological targets and clinical perspective. Journal of Cellular Physiology, 234(3), 2447-2459. doi:10.1002/jcp.27289

Ferre, S., Bonaventura, J., Zhu, W., Hatcher-Solis, C., Taura, J., Quiroz, C., . . . Zwilling, D. (2018). Essential Control of the Function of the Striatopallidal Neuron by Pre-coupled Complexes of Adenosine A(2A)-Dopamine D-2 Receptor Heterotetramers and Adenylyl Cyclase. Frontiers in Pharmacology, 9. doi:10.3389/fphar.2018.00243

Gao, X., Chen, H. L., Choi, H. K., Curhan, G., Schwarzschild, M. A., & Ascherio, A. (2008). Diet, urate, and Parkinson's disease risk in men. American Journal of Epidemiology, 167(7), 831-838. doi:10.1093/aje/kwm385

He, J. T., Xu, L., Yang, L., & Sun, C. X. (2019). Anti-oxidative effects of catechins and theaflavins on glutamate-induced HT22 cell damage. Rsc Advances, 9(37), 21418-21428. doi:10.1039/c9ra02721a

Herraiz, T., & Chaparro, C. (2006). Human monoamine oxidase enzyme inhibition by coffee and beta-carbolines norharman and harman isolated from coffee. Life Sciences, 78(8), 795-802. doi:10.1016/j.lfs.2005.05.074

Iijima, M., Orimo, S., Terashi, H., Suzuki, M., Hayashi, A., Shimura, H., . . . Okuma, Y. (2019). Efficacy of istradefylline for gait disorders with freezing of gait in Parkinson's disease: A single-arm, open-label, prospective, multicenter study. Expert Opinion on Pharmacotherapy, 20(11), 1405-1411. doi:10.1080/14656566.2019.1614167

Jakse, B., Jakse, B., Pajek, M., & Pajek, J. (2019). Uric Acid and Plant-Based Nutrition. Nutrients, 11(8), 15. doi:10.3390/nu11081736

Jiang, W. J., Ju, C. X., Jiang, H., & Zhang, D. F. (2014). Dairy foods intake and risk of Parkinson's disease: a dose-response meta-analysis of prospective cohort studies. European Journal of Epidemiology, 29(9), 613-619. doi:10.1007/s10654-014-9921-4

Kanthasamy, A. G., Kitazawa, M., Kanthasamy, A., & Anantharam, V. (2005). Dieldrin-induced neurotoxicity: Relevance to Parkinson's disease pathogenesis. Neurotoxicology, 26(4), 701-719. doi:10.1016/j.neuro.2004.07.010

Kasabova-Angelova, A., Kondeva-Burdina, M., Mitkov, J., Georgieva, M., Tzankova, V., & Zlatkov, A. (2020). Neuroprotective and MAOB inhibitory effects of a series of caffeine-8-thioglycolic acid amides. Brazilian Journal of Pharmaceutical Sciences, 56. doi:10.1590/s2175-97902019000318255

Kim, M., Jung, J., Jeong, N. Y., & Chung, H. J. (2019). The natural plant flavonoid apigenin is a strong antioxidant that effectively delays peripheral neurodegenerative processes. Anatomical Science International, 94(4), 285-294. doi:10.1007/s12565-019-00486-2

Kim, S., Kwon, S. H., Kam, T. I., Panicker, N., Karuppagounder, S. S., Lee, S., . . . Ko, H. S. (2019). Transneuronal Propagation of Pathologic alpha-Synuclein from the Gut to the Brain Models Parkinson's Disease. Neuron, 103(4), 627-+. doi:10.1016/j.neuron.2019.05.035

Kistner, A., & Krack, P. (2014). Parkinson's disease: no milk today? Frontiers in Neurology, 5. doi:10.3389/fneur.2014.00172

Kondeva-Burdina, M., Georgieva, M., Kasabova-Angelova, A., Tzankova, V., & Zlatkov, A. (2019). Preliminary in vitro evaluation of neuroprotective and monoamine oxidase type B inhibitory effects of newly synthesized 8-aminocaffeines. Neural Regeneration Research, 14(6), 971-972. doi:10.4103/1673-5374.250573

Kuder, K. J., Zaluski, M., Schabikowski, J., Latacz, G., Olejarz-Maciej, A., Jasko, P., . . . Kiec-Kononowicz, K. (2020). Novel, Dual Target-Directed Annelated Xanthine Derivatives Acting on Adenosine Receptors and Monoamine Oxidase B. Chemmedchem, 15(9), 772-786. doi:10.1002/cmdc.201900717

Liu, S. Y., Chan, P., & Stoessl, A. J. (2017). The underlying mechanism of prodromal PD: insights from the parasympathetic nervous system and the olfactory system. Translational Neurodegeneration, 6, 9. doi:10.1186/s40035-017-0074-8

Ma, C. R., Molsberry, S., Li, Y. P., Schwarzschild, M., Ascherio, A., & Gao, X. (2020). Dietary nicotine intake and risk of Parkinson disease: a prospective study. American Journal of Clinical Nutrition, 112(4), 1080-1087. doi:10.1093/ajcn/nqaa186

Manalo, R. V. M., & Medina, P. M. B. (2018). Caffeine Protects Dopaminergic Neurons From Dopamine-Induced Neurodegeneration via Synergistic Adenosine-Dopamine D2-Like Receptor Interactions in Transgenic Caenorhabditis elegans. Frontiers in Neuroscience, 12. doi:10.3389/fnins.2018.00137

McDaniel, P. A., Solomon, G., & Malone, R. E. (2005). The tobacco industry and pesticide regulations: Case studies from tobacco industry archives. Environmental Health Perspectives, 113(12), 1659-1665. doi:10.1289/ehp.7452

Miyazaki, I., Isooka, N., Kikuoka, R., Wada, K., Kitamura, Y., & Asanuma, M. (2018). Neuroprotective effects of coffee ingredients against rotenone-induced neurodegeneration in parkinsonian model. Movement Disorders, 33, S85-S85. Retrieved from ://WOS:000446176700184

Munoz, D. G., & Fujioka, S. (2018). Caffeine and Parkinson disease: A possible diagnostic and pathogenic breakthrough. Neurology, 90(5), 205-206. doi:10.1212/wnl.0000000000004898

Nataf, S., Guillen, M., & Pays, L. (2019). Common Neurodegeneration-Associated Proteins Are Physiologically Expressed by Human B Lymphocytes and Are Interconnected via the Inflammation/Autophagy-Related Proteins TRAF6 and SQSTM1. Frontiers in Immunology, 10, 16. doi:10.3389/fimmu.2019.02704

Nicholatos, J. W., Francisco, A. B., Bender, C. A., Yeh, T., Lugay, F. J., Salazar, J. E., . . . Libert, S. (2018). Nicotine promotes neuron survival and partially protects from Parkinson's disease by suppressing SIRT6. Acta Neuropathologica Communications, 6, 18. doi:10.1186/s40478-018-0625-y

Nielsen, S. S., Franklin, G. M., Longstreth, W. T., Swanson, P. D., & Checkoway, H. (2013). Nicotine from Edible Solanaceae and Risk of Parkinson Disease. Annals of Neurology, 74(3), 472-477. doi:10.1002/ana.23884

Oertel, W., Muller, H., Schade-Brittinger, C., Kamp, C., Balthasar, K., Articus, K., . . . Boyd, J. (2018). The NIC-PD-study - A randomized, placebo-controlled, double-blind, multi-centre trial to assess the disease-modifying potential of transdermal nicotine in early Parkinson's disease in Germany and N. America. Movement Disorders, 33, S159-S159. Retrieved from ://WOS:000446176700345

Pervin, M., Unno, K., Ohishi, T., Tanabe, H., Miyoshi, N., & Nakamura, Y. (2018). Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules, 23(6). doi:10.3390/molecules23061297

Quik, M., O'Leary, K., & Tanner, C. M. (2008). Nicotine and Parkinson's disease: Implications for therapy. Movement Disorders, 23(12), 1641-1652. doi:10.1002/mds.21900

Ribeiro, J. A., & Sebastiao, A. M. (2010). Caffeine and Adenosine. Journal of Alzheimers Disease, 20, S3-S15. doi:10.3233/jad-2010-1379

Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., . . . Mazmanian, S. K. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell, 167(6), 1469-+. doi:10.1016/j.cell.2016.11.018

Schlesinger, I., & Schlesinger, N. (2008). Uric acid in Parkinson's disease. Movement Disorders, 23(12), 1653-1657. doi:10.1002/mds.22139

Stefanis, L. (2012). alpha-Synuclein in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2(2), 23. doi:10.1101/cshperspect.a009399

Svensson, E., Horvath-Puho, E., Thomsen, R. W., Djurhuus, J. C., Pedersen, L., Borghammer, P., & Sorensen, H. T. (2015). Vagotomy and Subsequent Risk of Parkinson's Disease. Annals of Neurology, 78(4), 522-529. doi:10.1002/ana.24448

Taura, J., Nolen, E. G., Cabre, G., Hernando, J., Squarcialupi, L., Lopez-Cano, M., . . . Ciruela, F. (2018). Remote control of movement disorders using a photoactive adenosine A(2A) receptor antagonist. Journal of Controlled Release, 283, 135-142. doi:10.1016/j.jconrel.2018.05.033

Tseng, H. C., Wang, M. H., Chang, K. C., Soung, H. S., Fang, C. H., Lin, Y. W., . . . Tsai, C. C. (2020). Protective Effect of (-)Epigallocatechin-3-gallate on Rotenone-Induced Parkinsonism-like Symptoms in Rats. Neurotoxicity Research, 37(3), 669-682. doi:10.1007/s12640-019-00143-6

Weindel, C. G., Bell, S. L., Vail, K. J., West, K. O., Patrick, K. L., & Watson, R. O. (2020). LRRK2 maintains mitochondrial homeostasis and regulates innate immune responses to Mycobacterium tuberculosis. Elife, 9, 31. doi:10.7554/eLife.51071

Xu, Y., Xie, M. M., Xue, J. S., Xiang, L., Li, Y. L., Xiao, J., . . . Wang, H. L. (2020). EGCG ameliorates neuronal and behavioral defects by remodeling gut microbiota and TotM expression in Drosophila models of Parkinson's disease. Faseb Journal, 34(4), 5931-5950. doi:10.1096/fj.201903125RR

Yan, R., Zhang, J., Park, H. J., Park, E. S., Oh, S., Zheng, H. Y., . . . Mouradian, M. M. (2018). Synergistic neuroprotection by coffee components eicosanoyl-5-hydroxytryptamide and caffeine in models of Parkinson's disease and DLB. Proceedings of the National Academy of Sciences of the United States of America, 115(51), E12053-E12062. doi:10.1073/pnas.1813365115

Zhen, C., Li, D. M., Wang, H. Y., Wang, P., Zhang, W. J., Yu, J. T., . . . Wang, X. (2019). Tea consumption and risk of Parkinson's disease: A meta-analysis. Neurology Asia, 24(1), 31-40. Retrieved from ://WOS:000463141900006

Zhou, W., Chen, L., Hu, X. Q., Cao, S. S., & Yang, J. X. (2019). Effects and mechanism of epigallocatechin-3-gallate on apoptosis and mTOR/AKT/GSK-3 beta pathway in substantia nigra neurons in Parkinson rats. Neuroreport, 30(2), 60-65. doi:10.1097/wnr.0000000000001149



How to Cite

Considine, E., Yin, L., & Hartmann, M. (2021). A review of the primary nutritional and environmental factors associated with Parkinson’s disease. Journal of Student Research, 10(2). https://doi.org/10.47611/jsrhs.v10i2.1482



HS Review Articles