Two hypotheses of Brugada Syndrome – Repolarization and Depolarization: Literature Review


  • Clair Eunsoo Koo Henry M. Gunn Highschool
  • Ethan Hutt



Brugada, cardiac disease, repolarization, depolarization, action potential, electrocardiogram, ECG


Brugada syndrome is a recently discovered cardiac disease. The mechanisms behind this syndrome are unknown, but scientists are able to hypothesize possible mechanisms through various studies of electrocardiograms, canine wedge preparations, and genetic mutations. This review goes over two of the most potential hypotheses that explain the causes of the Brugada syndrome: the repolarization and depolarization hypotheses. Studies by Zhang et al., Wilde et al., Postema et al., Meregalli et al., Tse et al., and other scientists are reviewed to understand and evaluate the mechanisms behind each of the hypotheses. Although there is some evidence supporting the depolarization hypothesis, the repolarization hypothesis is more supported by real life studies and models of the syndrome.


Download data is not yet available.

References or Bibliography

Antzelevitch, C. (2006). Brugada Syndrome. Pacing and Clinical Electrophysiology, 29(10), 1130–1159.

Boukens, B. J., Sylva, M., de Gier-de Vries, C., Remme, C. A., Bezzina, C. R., Christoffels, V. M., & Coronel, R. (2013). Reduced Sodium Channel Function Unmasks Residual Embryonic Slow Conduction in the Adult Right Ventricular Outflow Tract. Circulation Research, 113(2), 137–141.

Brugada, J., Pappone, C., Berruezo, A., Vicedomini, G., Manguso, F., Ciconte, G., Giannelli, L., & Santinelli, V. (2015). Brugada Syndrome Phenotype Elimination by Epicardial Substrate Ablation. Circulation: Arrhythmia and Electrophysiology, 8(6), 1373–1381.

Brugada Syndrome. (2016, April 4). NORD (National Organization for Rare Disorders).

Brugada syndrome - Diagnosis and treatment - Mayo Clinic. (2020, March 20). Mayo Clinic.

Brugada syndrome - Symptoms and causes. (2020, March 20). Mayo Clinic.

Cohen, S. A. (1996). Immunocytochemical Localization of rH1 Sodium Channel in Adult Rat Heart Atria and Ventricle. Circulation, 94(12), 3083–3086.

CV Physiology | Electrocardiogram (EKG, ECG). (n.d.). Cardiovascular Physiology Concepts.

Franz, M. R., Bargheer, K., Rafflenbeul, W., Haverich, A., & Lichtlen, P. R. (1987). Monophasic Action Potential Mapping in Human Subjects with Normal Electrocardiograms: Direct Evidence for the Genesis of the T Wave. Circulation, 75(2), 379–386.

Ikeda, T., Sakurada, H., Sakabe, K., Sakata, T., Takami, M., Tezuka, N., Nakae, T., Noro, M., Enjoji, Y., Tejima, T., Sugi, K., & Yamaguchi, T. (2001). Assessment of Noninvasive Markers in Identifying Patients at Risk in The Brugada Syndrome: Insight into Risk Stratification. Journal of the American College of Cardiology, 37(6), 1628–1634.

Ikonnikov, G. (n.d.). Physiology of Cardiac Conduction and Contractility. McMaster Pathophysiology Review. Retrieved October 27, 2020, from

Intervals and Segments of the Electrocardiogram. (n.d.). My EKG.

Janse, M. J. & Kléber, A. G. (1981). Electrophysiological Changes and Ventricular Arrhythmias in the Early Phase of Regional Myocardial Ischemia. Circulation Research, 49(5), 1069–1081.

Larkin, J. (2020, September 23). Brugada Syndrome. Life in the Fastlane.

Le Scouarnec, S., Karakachoff, M., Gourraud, J.-B., Lindenbaum, P., Bonnaud, S., Portero, V., Duboscq-Bidot, L., Daumy, X., Simonet, F., Teusan, R., Baron, E., Violleau, J., Persyn, E., Bellanger, L., Barc, J., Chatel, S., Martins, R., Mabo, P., Sacher, F., Haïssaguerre, M., Kyndt, F., Schmitt, S., Bézieau, S., Le Marec, H., Dina, C., Schott, J., Probst, V., & Redon, R. (2015). Testing the Burden of Rare Variation in Arrhythmia-Susceptibility Genes Provides New Insights into Molecular Diagnosis for Brugada Syndrome. Human Molecular Genetics, 24(10), 2757–2763.

Leoni, A.-L., Gavillet, B., Rougier, J.-S., Marionneau, C., Probst, V., Le Scouarnec, S., Schott, J.-J., Demolombe, S., Bruneval, P., Huang, C. L. H., Colledge, W. H., Grace, A. A., Le Marec, H., Wilde, A. A., Mohler, P. J., Escande, D., Abriel, H., & Charpentier, F. (2010). Variable Nav1.5 Protein Expression from the Wild-Type Allele Correlates with the Penetrance of Cardiac Conduction Disease in the Scn5a+/− Mouse Model. PLoS ONE, 5(2), e9298.

Lukas, A. & Antzelevitch, C. (1996). Phase 2 Reentry as a Mechanism of Initiation of Circus Movement Reentry in Canine Epicardium Exposed to Simulated Ischemia. Cardiovascular Research, 32(3), 593–603.

Maoz, A., Christini, D. J., & Krogh-Madsen, T. (2014). Dependence of Phase-2 Reentry and Repolarization Dispersion on Epicardial and Transmural Ionic Heterogeneity: a Simulation Study. EP Europace, 16(3), 458–465.

Meregalli, P., Wilde, A., & Tan, H. (2005). Pathophysiological Mechanisms of Brugada Syndrome: Depolarization Disorder, Repolarization Disorder, or More?. Cardiovascular Research, 67(3), 367–378.

Morita, H., Zipes, D. P., Fukushima-Kusano, K., Nagase, S., Nakamura, K., Morita, S. T., Ohe, T., & Wu, J. (2008). Repolarization Heterogeneity in the Right Ventricular Outflow Tact: Correlation with Ventricular Arrhythmias in Brugada Patients and in an in Vitro Canine Brugada Model. Heart Rhythm, 5(5), 725–733.

Nademanee, K., Veerakul, G., Chandanamattha, P., Chaothawee, L., Ariyachaipanich, A., Jirasirirojanakorn, K., Likittanasombat, K., Bhuripanyo, K., & Ngarmukos, T. (2011). Prevention of Ventricular Fibrillation Episodes in Brugada Syndrome by Catheter Ablation Over the Anterior Right Ventricular Outflow Tract Epicardium. Circulation, 123(12), 1270–1279.

Nagase, S., Kusano, K. F., Morita, H., Fujimoto, Y., Kakishita, M., Nakamura, K., Emori, T., Matsubara, H., & Ohe, T. (2002). Epicardial Electrogram of the Right Ventricular Outflow Tract in Patients with the Brugada Syndrome. Journal of the American College of Cardiology, 39(12), 1992–1995.

Nishizaki, M., Fujii, H., Sakurada, H., Kimura, A., & Hiraoka, M. (2005). Spontaneous T Wave Alternans in a Patient with Brugada Syndrome-Responses to Intravenous Administration of Class I Antiarrhythmic Drug, Glucose Tolerance Test, and Atrial Pacing. Journal of Cardiovascular Electrophysiology, 16(2), 217–220.

Postema, P. G., van Dessel, P. F. H. M., Kors, J. A., Linnenbank, A. C., van Herpen, G., Ritsema van Eck, H. J., van Geloven, N., de Bakker, J. M. T., Wilde, A. A. M., & Tan, H. L. (2010). Local Depolarization Abnormalities Are the Dominant Pathophysiologic Mechanism for Type 1 Electrocardiogram in Brugada Syndrome. Journal of the American College of Cardiology, 55(8), 789–797.

Sakamoto, S., Takagi, M., Tatsumi, H., Doi, A., Sugioka, K., Hanatani, A., & Yoshiyama, M. (2015). Utility of T-Wave Alternans During Night Time as a Predictor for Ventricular Fibrillation in Patients with Brugada Syndrome. Heart and Vessels, 31(6), 947–956.

Schweizer, P. A., Fink, T., Yampolsky, P., Seyler, C., Fabritz, L., Kirchhof, P., Becker, R., Koenen, M., Katus, H. A., & Thomas, D. (2013). Generation and Characterization of SCN5A Loss-of-Function Mutant Mice Modeling Human Brugada Syndrome. European Heart Journal, 34(suppl 1), 4556.

Takami, M., Ikeda, T., Enjoji, Y., & Sugi, K. (2003). Relationship Between ST-Segment Morphology and Conduction Disturbances Detected by Signal-Averaged Electrocardiography in Brugada Syndrome. Annals of Noninvasive Electrocardiology, 8(1), 30–36.

The Action Potential in Ventricular Cells - Phases. (2018, March 8). TeachMePhysiology.

Tse, G., Liu, T., Li, K. H. C., Laxton, V., Chan, Y. W. F., Keung, W., Li, R. A., & Yan, B. P. (2016). Electrophysiological Mechanisms of Brugada Syndrome: Insights from Pre-clinical and Clinical Studies. Frontiers in Physiology, 7, 1–6.

Uchimura-Makita, Y., Nakano, Y., Tokuyama, T., Fujiwara, M., Watanabe, Y., Sairaku, A., Kawazoe, H., Matsumura, H., Oda, N., Ikanaga, H., Motoda, C., Kajihara, K., Oda, N., Verrier, R. L., & Kihara, Y. (2014). Time-Domain T-Wave Alternans is Strongly Associated with a History of Ventricular Fibrillation in Patients with Brugada Syndrome. Journal of Cardiovascular Electrophysiology, 25(9), 1021–1027.

Veldkamp, M. W., Viswanathan, P. C., Bezzina, C., Baartscheer, A., Wilde, A. A. M., & Balser, J. R. (2000). Two Distinct Congenital Arrhythmias Evoked by a Multidysfunctional Na+ Channel. Circulation Research, 86(9), E91–E97.

Wilde, A. A. M., Postema, P. G., Di Diego, J. M., Viskin, S., Morita, H., Fish, J. M., & Antzelevitch, C. (2010). The Pathophysiological Mechanism Underlying Brugada Syndrome. Journal of Molecular and Cellular Cardiology, 49(4), 543–553.

Yan, G.-X. & Antzelevitch, C. (1999). Cellular Basis for the Brugada Syndrome and Other Mechanisms of Arrhythmogenesis Associated With ST-Segment Elevation. Circulation, 100(15), 1660–1666.

Zhang, J., Sacher, F., Hoffmayer, K., O’Hara, T., Strom, M., Cuculich, P., Silva, J., Cooper, D., Faddis, M., Hocini, M., Haïssaguerre, M., Scheinman, M., & Rudy, Y. (2015). Cardiac Electrophysiological Substrate Underlying the ECG Phenotype and Electrogram Abnormalities in Brugada Syndrome Patients. Circulation, 131(22), 1950–1959.



How to Cite

Koo, C., & Hutt, E. (2021). Two hypotheses of Brugada Syndrome – Repolarization and Depolarization: Literature Review. Journal of Student Research, 10(2).



HS Review Articles