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ABSTRACT 

A swarm of robots has unique characteristics that allow it to handle complex tasks efficiently. In this work, the de-
ployment of a swarm of robots in a body of water is studied using computer simulations to track and identify sources 
of plume pollution. The water body is modeled as a section of a lake. The pollution source is a marine plume specified 
at a location unknown to the robots, which the robotic swarm is tasked to track efficiently. Heterogenous swarms of 
robots are employed which allows exploration of various behavioral archetypes of the robots as well as the distribution 
of archetypes among the swarm to simulate a diverse body of robots, and this is compared to homogeneous swarms 
of robots too. A computer simulation-based study is carried out to investigate the speed and accuracy of marine pol-
lution plume detection by swarms with varying extents of heterogeneity. It is demonstrated that the diversity of robots 
can be beneficial to a swarm of robots if the archetypes are individually productive but could be harmful otherwise. 
Different extents of diversity are useful depending on the archetypes present in the swarm. 

Introduction 

Robotic swarms are defined by interactions between individual robots. In many circumstances, a swarm of robots is 
preferred to a single robot. Swarms are capable of handling multiple tasks, and they are scalable, cheaper than a single 
complex robot, and more energy efficient [1]. Many applications require coordination in problem-solving and benefit 
from swarm robotics. These applications include area exploration, agriculture, search-and-rescue, and surveillance, 
extending to space, terrestrial, aquatic, and aerial domains. Particularly, swarms of robots can be used in slave-master 
structure to efficiently locate a victim in a search-and-rescue mission, or they can be sent to space to coordinate to 
college materials and resources [2,3,4,5,6]. It is their characteristics of group behavior that makes them applicable to 
wide varieties of tasks in diverse environments. The design of swarm robotics software and hardware is an active 
research area. Many foundational algorithms are inspired by biological systems, such as Ant Colony Optimization 
(ACO), Genetic Algorithm, Particle Swarm Optimization (PSO), Differential Evolution, and social insects like ants 
and bees. The ACO method is modeled after the way in which ants in an ant colony produce several paths of phero-
mones leading to a source of food, and the ants will ultimately take the shortest path to the food source; this demon-
strates qualities like local communication and emergent behavior of swarms. PSO follows the flocking of birds and 
their coexisting traits of cohesiveness, separation, and alignment [6,7,8,9]. Other proposed algorithms include uniform 
dispersion, robot mapping, chain-based path formation, and more [8,9].  

Swarms consist of several robots that interact with neighbors and surrounding environments. They exhibit 
emergent intelligence: pattern organization, spatial awareness, navigation, environment monitoring, and more. Swarm 
members can make individual decisions as well as establish consensus with others through local interactions, rather 
than a centralized top-down communication structure [6]. Interactions often use wireless communications, however, 
acoustic communication is preferred for underwater applications due to its ability to travel large distances through 
water [7]. Optical or tethered communication methods exist but are not well-suited to aquatic environments [10]. 
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The taxonomy of individual robots within a swarm can be diverse [11]. The performance of the swarm can 
be optimized via the behavioral diversity of component robots. Robots can further be diverse in finer details of their 
communication: bandwidth, ranges, and topologies [12]. Diversity is also seen in the composition of the robots, phys-
ically and function-wise. Widely diverse distribution of behaviors in a swarm of robots is shown to be more beneficial 
than homogeneity [13]. This study imitates the colonies of honeybees, in which there are roles of bees, including 
random wandering bees, seeking bees, and stationary ones in aggregation behavior. This further demonstrates the 
inspiration that robot swarms take from biological systems, much like the swarm we replicate in this study does. 

Swarms are designed specific to the task they are designed to complete, and this heavily relies on the envi-
ronment the swarm is in. Specifically to this study, the nature of marine plumes is important to understand. Marine 
plumes demonstrate intermittent release of particles, sinuous shapes, and time-varying characteristics, and realistic 
characteristics need to be employed in order to yield accurate results [14]. As a result of these plume characteristics, 
the robot archetypes (discussed later) can be tested realistically to the specific environment of an enclosed lake.  

 

Methods  
 
As mentioned before, the focus of the present work is to develop an understanding of the impact of behavioral diversity 
of locally interacting underwater swarms on plume-finding performance. For this purpose, a simulation of the robotic 
swarm and the plume was developed. The simulation was parameterized to allow various behaviors of the robots and 
the plume to be implemented. A series of experiments (computer simulations) were run by varying the parameters in 
order to establish the role of diversity on performance 
 
Plume Model 
 
A lake section is modeled as a two-dimensional rectangular plane with horizontal or vertical water currents. A plume 
source is modeled as a location that emits particles at a randomized injection velocity. Particles are defined by location, 
injection velocity, magnitude, deceleration rate, and maximum speed. Particles are intermittently released from the 
plume source. At each time step of the simulation, the location of particles is updated by adding the resultant vector 
from the water currents and the injection velocity. A randomly oriented velocity vector is added to simulate diffusion. 
The current vector is randomly initialized to be horizontal or vertical and then updated at each time step using Equation 
(1), as follows,  
 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ×𝑠𝑠𝑠𝑠𝑠𝑠 �2𝜋𝜋 ×
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇

�. (1) 

 
The plume current has a magnitude of 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. A sinusoidal function of period, 𝑇𝑇, is assumed in order to 

model the dynamics of marine plumes in time and space, releasing particles intermittently and taking sinuous shapes 
[14]. 

To simulate the physical slowdown of the particle velocity in the lake, a deceleration factor is applied as 
demonstrated in Equation (2),  
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 × 0.999. (2) 
 

Once the particles hit the edges of the lake section, they leave the lake section and are deleted. The resulting 
plume is shown in Figure 1. The magnitude and period variables of the sine wave equation can be altered by changing 
the parameters of the developed computer software to change the plume behavior. The bottom-top x and left-right y 
axes are the lake boundaries; each side is 15,000 units (dimensionless). 
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Figure 1. Plume shapes of different parameters showing different appearances. 
 
Modeling of the Swarm of Robots 
 
Each robot in the swarm has the following characteristics:  

1) position,  
2) velocity,  
3) detected concentration of particles,  
4) signaling status (to indicate if the robot is detecting concentration),  
5) hearing dictionary (to store data of local signaling robots),  
6) history of concentrations,  
7) turning vector (the velocity to add if the robot is turning),  
8) archetype, 𝐴𝐴 (discussed below), and  
9) state, 𝑆𝑆 (discussed below).  

 
Simulation Setup 
 
At the beginning of each simulation, the plume and a set of robots are initialized with the above characteristics. The 
simulation then proceeds at discrete times as a series of time steps, referred to as time steps. At each time step, data is 
exchanged between the plume and robots and their characteristics are updated, as discussed below. 
 
First Experiment 
In the first set of experiments, each robot is designed with four possible states:  

1) 𝑠𝑠1 = still,  
2) 𝑠𝑠2 = finding-the-plume,  
3) 𝑠𝑠3 = inside-the-plume, or  
4) 𝑠𝑠4 = reacquiring-the-plume. 

 
If the robot is initialized to be still, its only task is to detect the concentration of pollutant particles within a 

radius and send this data to local robots; they do not move. If the robot begins detecting concentration, it can change 
statuses. Whether it will change its status or not depends on its tendencies and the probability of changing (discussed 
more below). While in finding-the-plume, the robot will head in a randomized direction and detect particles. If there 
are ever plume particles detected, the robot can change statuses. If the robot’s status is inside-the-plume, it will explore 
the plume. If the concentration of the robot’s current detected concentration is higher than the concentration at its last 
position, then it will keep going in the same direction. Otherwise, the robot will head in a random direction. If the 
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robot detects zero concentration, it can change its status. If the robot is reacquiring-the-plume, it will head in the 
direction of the position with the highest detected concentration in its concentration history. 

Robots of different archetypes, 𝐴𝐴, are defined by specifying the relative scores of these four states as a set of 
four numbers 𝐴𝐴 =[𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4] for still, finding-the-plume, inside-the-plume, or reacquiring-the-plume states, re-
spectively. The relative scores are converted to relative probabilities, 𝑃𝑃𝑖𝑖, via the softmax function, as 

 

𝑃𝑃𝑖𝑖 =
𝑒𝑒𝑎𝑎𝑖𝑖

∑ 𝑒𝑒𝑎𝑎𝑗𝑗4 
𝑗𝑗=1

. (3) 

 
Each number in these distributions is a score that influences the relative probability the robot has of being 

still, finding-the-plume, being inside-the-plume, and reacquiring-the-plume states, respectively. Three archetypes con-
sidered in this work are (1) lazybot, (2) greedybot, and (3) confusedbot. The score distributions are presented in Table 
1. 

 
Table 1. Robot archetype-score distributions. 
 

Archetype 𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 𝒂𝒂𝟑𝟑 𝒂𝒂𝟒𝟒 
lazybot 6 1 3 2 
greedybot 1 10 10 0 
confusedbot 7 7 7 7 

 
The lazybot has a higher probability of being still, the greedybot tends to be always looking for the plume 

and remaining inside it, and the confusedbot has equal probabilities. 
Besides the archetype-score distribution which remains invariant during the simulation, each robot is also 

assigned a running-score distribution 𝑅𝑅 =[𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, 𝑟𝑟4] which is updated at each time step during the simulation, as 
described below. The default running-score (𝑅𝑅) distributions of each state are given in Table 2. 

 
Table 2. Robot running-score distributions. 
 

State 𝒓𝒓𝟏𝟏 𝒓𝒓𝟐𝟐 𝒓𝒓𝟑𝟑 𝒓𝒓𝟒𝟒 
𝑠𝑠1, still 10 7 5 0 
𝑠𝑠2, finding-the-plume 0 10 1 0 
𝑠𝑠3, inside-the-plume 0 0 10 1 
𝑠𝑠4, reacquiring-the-plume 0 0 1 10 

 
When a robot begins or stops detecting particles, 𝑅𝑅 is updated according to a state-transition distribution 𝑇𝑇 =

[𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4] as in Table 3.  
 
Table 3. Robot state-transition distributions. 
 

State Transition 𝒕𝒕𝟏𝟏 𝒕𝒕𝟐𝟐 𝒕𝒕𝟑𝟑 𝒕𝒕𝟒𝟒 
𝑠𝑠1 → 𝑠𝑠3 (still-to-inside) -8 -5 8 0 
𝑠𝑠2 → 𝑠𝑠3 (finding-to-inside) 0 -7 7 0 
𝑠𝑠3 → 𝑠𝑠4 (inside-to-acquiring) 0 0 -7 7 
𝑠𝑠4 → 𝑠𝑠3 (reacquiring-to-inside) 0 0 7 -7 
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Whether a robot changes statuses depends on the current status of the robot. For example, if a robot is finding-
the-plume, it will not be able to change statuses if it is not detecting concentration, but it can change statuses if it starts 
detecting concentration. This is more elaborately described in Figure 2.  
 

 
 

(a) Condition: Stopped detecting concentration 
 

 
 

(b) Condition: Started detecting concentration 
 

Figure 2. First set of experiments: transition between statuses. 
 

The 𝑇𝑇 distributions are applied to update 𝑅𝑅. For example, if the robot is in the 𝑠𝑠2 state (finding the plume) 
then its score distribution is [0, 10, 1, 0], as given in Table 2. However, if it begins detecting particles then its state 
should be 𝑠𝑠3 (inside the plume) so the 𝑠𝑠2 → 𝑠𝑠3 state transition scores are added to its current distribution at the next 
time step of the simulation, giving the update scores as [0, 10, 1, 0] + [0,−7, 7, 0] = [0, 3, 8, 0]. Finally, the robot’s 
archetype score 𝐴𝐴 is added to the updated 𝑅𝑅, as 𝑃𝑃 = 𝐴𝐴 + 𝑅𝑅 to get the probability distribution using Equation (3) to 
determine the new status. 

At each time step, the robot can update its position in one of the two ways. First, the robots can hear the local 
robots’ data and use their individual intelligence to come up with a new desired position, 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖, which will be the 
concentration-weighted average of all the positions, as described in Equation (4): 
 

𝑥𝑥𝑖𝑖 = �
𝑐𝑐𝑗𝑗𝑥𝑥𝑗𝑗
𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖

𝑛𝑛

𝑗𝑗=1

 ,        𝑦𝑦𝑖𝑖 = �
𝑐𝑐𝑗𝑗𝑦𝑦𝑗𝑗
𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖

𝑛𝑛

𝑗𝑗=1

 , 𝑎𝑎𝑎𝑎𝑎𝑎       𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖 = �𝑐𝑐𝑗𝑗

𝑛𝑛

𝑗𝑗=1

. (4) 
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Here, 𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represents the total of the concentrations of all the 𝑛𝑛 heard robots, 𝑐𝑐𝑗𝑗 is the concentration of each 
heard robot, 𝑥𝑥𝑗𝑗 and 𝑦𝑦𝑗𝑗 are the coordinate positions of these heard robots. The new desired position is the position the 
robot should go to next, and the robot accordingly updates its velocity to head to that position. Alternatively, for when 
all the heard concentration data is zero, the robot can update its position through only the individual intelligence, 
which uses the concentration history to determine where the concentration is highest, to the best of its knowledge. If 
the entire history is filled with concentrations of zero, the robot will decide to keep going in the same direction. 

When a robot reaches the edge or boundary of the lake, it is made to turn. The turning is simulated using the 
following equation, 
 

𝑣𝑣𝑖𝑖𝑛𝑛+1 = 𝑣𝑣𝑛𝑛 +
(𝑣𝑣𝑑𝑑 − 𝑣𝑣𝑖𝑖)
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

. (5) 

 
Here, 𝑣𝑣𝑑𝑑 is the desired or the ending velocity after it is done turning, 𝑣𝑣𝑖𝑖 is the initial velocity of the robot 

before it starts turning, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the number of time-steps the robot wants to turn in, 𝑣𝑣𝑛𝑛 is the current velocity and 
𝑣𝑣𝑛𝑛+1 the updated velocity at the next time step.  

When the experiment first runs, the robots are all initialized to the finding plume phase and they are randomly 
given one of the three archetypes (which is further described below). On each time step, the robot detects concentra-
tions, sends this data, and then behaves according to the status they are in. To terminate the experiment, when the 
robots detect concentration on each time-step, the number of robots detecting any sort of plume particles is assumed 
to be inside the plume. Once 40% of the robots are inside the plume, they all report a concentration, and the position 
of the robot with the highest detected concentration is reported to be the detected plume source. This is the position 
used in the distance calculation (distance between this detected plume source and the actual plume source). Images of 
the simulation are shown in Figure 3.  
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Figure 3. The images show how the robots make progress on their task. With each image from (a) to (d), they get 
closer to the plume source. The local interactions are shown through how the robots cluster together around the 
plume source.  
 

In the first set of experiments, there were two data sets collected, one for each of the two plume sources. For 
each plume source, the simulation was run seven times (which represents seven trials) for each probability distribution 
(actual probability and not the coefficients for the softmax function) of archetypes given as [𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑞𝑞𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔] 
for lazybot, confusedbot, and greedybot, respectively. These distributions are given in Table 4 and represent different 
measures of diversity. The results are described in the Results section. 
 
Table 4. Archetype distribution for the first experiment trials. 
 

Trial # 𝒒𝒒𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 𝒒𝒒𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒒𝒒𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 
1 (max diversity) 1/3 1/3 1/3 
2 0.3 0.2 0.5 
3 0.1 0.6 0.3 
4 0.5 0.1 0.4 
5 (no diversity) 1.0 0.0 0.0 
6 (no diversity) 0.0 1.0 0.0 
7 (no diversity) 0.0 0.0 1.0 

 
Second Experiment  
The second set of experiments included improvements from the first one, as follows: 

1) the still status and the lazybot archetype are eliminated, as they are found to be unhelpful (described more in 
the Results section). A new archetype, seekerbot is added. 

2) the simulation termination condition was modified. Each robot stores a Boolean representing whether it found 
the plume or not. Each robot constantly stores how much the detected concentration changes on each time 
step. For a given robot, if the detected concentration on each time-step has relatively stayed the same, then 
the robot changes its found plume status to be true. Once enough robots that have the found plume status are 
near each other, the program terminates.  

3) the particles have a new characteristic: an intensity, or the strength of the concentration. Each particle has an 
initial intensity of 1000 which is decreased at each time step subsequently, as described in Equation (6). In 
this way, the highest concentration of particles would be in the plume source, like in a real-world marine 
pollution plume. 

 
intensityn+1 = intensityn × 0.95. (6) 

 
The new states are: 

1) 𝑠𝑠1 = finding-the-plume 
2) 𝑠𝑠2 = inside-the-plume  
3) 𝑠𝑠3 = reacquiring-the-plume 

And, the three archetypes are: 
1) greedybot,  
2) confusedbot, and 
3) seekerbot 
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They are defined by specifying the relative scores of these three states as a set of three numbers 𝐴𝐴 =[𝑎𝑎1, 𝑎𝑎2, 
𝑎𝑎3]. The score distributions are presented in Table 5. 

 
Table 5. Robot archetype-score distributions. 
 

Archetype 𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 𝒂𝒂𝟑𝟑 
greedybot 0 0 0 
confusedbot 14 0 0 
Seekerbot 14 -7 -7 

 
As in the first experiment, each robot is also assigned a running-score distribution 𝑅𝑅 = [𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3] which is 

updated at each time step during the simulation. The default running-score (𝑅𝑅) distributions of each state are given in 
Table 6. 
 
 
 
Table 6. Robot running-score distributions. 
 

State 𝒓𝒓𝟏𝟏 𝒓𝒓𝟐𝟐 𝒓𝒓𝟑𝟑 
𝑠𝑠1, finding-the-plume 10 1 0 
𝑠𝑠2, inside-the-plume 0 10 1 
𝑠𝑠3, reacquiring-the-plume 0 1 10 

 
And, the state transition distribution, similar to the first experiment, is given in Table 7. 
 

Table 7. Robot state-transition distributions. 
 

State Transition 𝒕𝒕𝟏𝟏 𝒕𝒕𝟐𝟐 𝒕𝒕𝟑𝟑 
𝑠𝑠1 → 𝑠𝑠2 (finding-to-inside) -7 7 0 
𝑠𝑠2 → 𝑠𝑠3 (inside-to-reacquiring) 0 -7 7 
𝑠𝑠3 → 𝑠𝑠2 (reacquiring-to-inside) 0 7 -7 

 
Similar to the first set of experiments, the ability for a robot in a certain status is determined by the diagrams 

in Figure 4. This is a visual representation of the data in Table 7 and includes the conditions of changing statuses, 
including if the robot started to or stopped detecting concentration. 
 

 
 

(a) Condition: Stopped detecting concentration 
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(b) Condition: Started detecting concentration 
 
Figure 4. Second set of experiments: transition between statuses. 
 

To eliminate any confounding variables, the experiments were run with ten different plume locations and 
velocities. The probability distributions of archetypes are given in Table 8 (similar to Table 4 in the first experiment). 
The results are described in the Results section. 

 
Table 8. Archetype distribution for the second experiment trials. 
 

Trial # 𝒒𝒒𝒍𝒍𝒍𝒍𝒍𝒍 𝒒𝒒𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒒𝒒𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 
1 0.33 0.33 0.33 
2 0.10 0.1 0.8 
3 0.10 0.80 0.10 
4 0.80 0.10 0.10 
5 0.25 0.25 0.50 
6 0.25 0.50 0.25 
7 0.50 0.25 0.25 
8 0.40 0.40 0.20 
9 0.40 0.20 0.40 
10 0.20 0.40 0.40 
11 0.50 0.50 0.00 
12 0.50 0.00 0.50 
13 0.00 0.50 0.50 
14 1.00 0.00 0.00 
15 0.00 1.00 0.00 
16 0.00 0.00 1.00 

 
Having these variations of distributions allows us to observe the effects of the individual archetypes as well 

as the different variations of diversity. For each distribution at each plume location, the simulation is run ten times. 
The results of this experiment are presented in the Results section.  
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Results  
 
First Experiment 
 
The results of the first experiment, with the seven archetype distributions (Table 4), are described below. Each arche-
type distribution is run for two different plume source locations. The first plume source location at (8405, 11731) and 
with a velocity of (-3.4, 3.7) is in the top right corner of the section and emits plume particles towards the top of the 
simulated area; this is not accessible to all robots in the beginning. The second plume source location at (5830, 10906) 
and with a velocity of (-0.3, -5.9) was more centered around the simulation and its particles were easier for robots to 
encounter. 

The results are displayed in Figures 5 and 6. On the x-axis is the measure of homogeneity of the robots’ 
archetypes. It is derived from the archetype distribution (Table 4) by taking its standard deviation.  In this sense, the 
homogeneity is the maximum when all the robots are of the same type (diversity of robots is minimum) and is mini-
mum when they are equally mixed (e.g. 1/3 for each of the three types, so diversity is maximum). The distance and 
time are displayed on the y-axis. Distance is the average distance a robot travelled and time is the average time taken 
to reach to the plume source. Also, a linear regression is included to illustrate the general trends. With increase in 
homogeneity the distance is observed to decrease whereas the time to increase. Note that trials numbers 5, 6, and 7 
will have the same homogeneity as each represents the case of all robots being one of each of the 3 archetypes. These 
are the rightmost points with the highest homogeneity. These are distinguished with each other in Figure 7.  

 

 
 
Figure 5. Plume detection results for the plume source at (8405, 11731) and a velocity of (-3.4, 3.7). 
 

 
 
Figure 6. Plume detection results for the plume source at (5830, 10906) and a velocity of (-0.3, -5.9). 
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Figure 7. Performance of robots of different archetypes, first experiment. 
 

The distance results at the first plume source (Figure 5) were between 2000 units and 2500 units while the 
time results were generally between 250 and 750 time-steps. However, for the second plume source location (Figure 
6), the distance results were generally between 1000 and 2500 units and the time results were between 200 and 300 
time-steps. Additionally, Figure 7 shows the performance of each archetype. Clearly, the lazybot performance was the 
worst. While the distance results were within 100 units of each other, the time results were much more varying, with 
the lazy bots being much slower in getting the results. 

The location of the plume source significantly impacted the results of the experiment and was a determined 
to be confounding variable that affected the results and prevented definite conclusions to be drawn about the perfor-
mance. These observations led to design of a second set of experiments, as described below.  
 
Second Experiment 
 
A second set of experiments was run with additional plume source locations and velocities, both randomly distributed 
to minimize its confounding effect, as noted above. Also, since the lazy bot proved to be unhelpful in the previous set 
of experiments, a new robot archetype, seekerbot is added for the second set of experiments, described in the next 
section. The results for the second set of experiments are presented in Figures 8 and 9. 
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Figure 8. Plume detection results for the second experiment. Each point represents the results for a specific distribu-
tion of robot archetype and a plume source. The points represent every trial, with each plume and each archetype 
distribution. 
 

As evident from the linear regression, while the distance seemed to decrease as the homogeneity increased, 
the time-steps seemed to increase.  

Figure 9 takes a closer look at the homogeneous distributions (only one archetype present compared to the 
diverse distribution where all three types are mixed in equal proportions. It is even from the distance plot that the 
confusedbot is the worst-performing. 
 

 
 
Figure 9. Performance of robots of different archetypes, second experiment. 
 

Figure 10 represents the different extents to which diversity can be present in a swarm and compares the 
results. Knowing that the confused archetype is the worst-performing one, only the distributions which have a mini-
mum presence of the confusedbots are included.  
 

 
 
Figure 10. Performance of robots of different distributions, second experiment. 
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ered that the lazy bot, which simply remained still and reported concentration, was unhelpful in this task. If a still 
robot was far from the plume and never detected any concentration, this robot would consistently report 0.0 particles 
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without making progress. Knowing this, this archetype was replaced with a seeker bot. Additionally, the plume source 
location was found to be a confounding variable. The first plume source location at (8405, 11731) and with a velocity 
of (-3.4, 3.7) is in the top right corner of the section and emits plume particles towards the top of the simulated area; 
this is not very accessible to all robots. However, the second plume source location at (5830, 10906) and with a 
velocity of (-0.3, -5.9) was more centered around the simulation and its particles were easier for robots to encounter. 
This would explain why the swarm simulated with the first plume source was more inaccurate and took longer.  

Knowing these results in the first experiments, improvements were made in the simulations. In the second 
set of experiments, it was noticed that more homogenous swarms tended to yield slightly better results, meaning 
smaller distance and time results. To reveal why this behavior occurred, performance of different archetypes and their 
performance were studied. Figure 9 reveals that the confused bot seems to have the worst behavior, while the seeker 
and greedy bots seem to perform the best. This is attributed to the behavior of each of the archetypes. A confused bot’s 
main activity is seeking; it has an equal probability of staying in the finding plume state or the inside plume state. This 
proves to not be as beneficial because, if the robot has not detected particles and it goes into the inside the plume state, 
it will likely keep detecting no plume particles. However, the seeker bot is always seeking and has a small chance of 
leaving this phase. This is more productive because it is constantly moving and is likely to eventually encounter the 
plume. 

Figure 10 compares different levels of diversity while the better-performing archetypes remain the most 
prevalent. The distributions that minimize or eliminate the confused bots are more beneficial than increasing the num-
ber of confused bots in a swarm to maximize diversity. When compared to complete homogeneity (on the leftmost 
bars), some distributions with a little diversity, like the [0.1, 0.1, 0.8] and [0.8, 0.1, 0.1] distributions, perform worse 
while the [0.5, 0.0, 0.5] distribution, which eliminates confused bots, performs better. This suggests eliminating bad-
performing archetypes and decreasing diversity is better than including them to increase diversity. Behavioral diversity 
is not always beneficial. If the performance of each individual archetype is known, then the diversity should accord-
ingly be adjusted. But when the performance of individual archetypes is not known, diversity might be the safer option.  

While it is true that behavioral diversity is generally beneficial as previous studies describe, we cannot ignore 
the few cases in which this is not true. Before creating a heterogeneous swarm and expecting better results, evaluating 
the different diverse behaviors and their individual effects on the overall performance is crucial. For example, in 
honeybees [13] where there are different roles of the bees, bees’ capabilities are not used for unnecessary or harmful 
behaviors because it would hurt the overall goal of the swarm.  

Many improvements can be made to this simulation to make it more representative of the real world. First, 
the environment can be three-dimensional, since we are modeling a body of water. The plume can be modeled with 
more characteristics resembling those of a real pollution plume, including a time-varying flow field and a better flow 
of the particles. Additionally, more experimentation can be done to reveal which archetypes perform the best. More 
distributions should be tested to find a more ideal distribution of archetypes. Also, more termination conditions can 
be tested to yield better results. Implementing these and similar changes can increase the performance of this simula-
tion and lead to a more accurate representation of the real-world scenario.  
 

Conclusion  
 
In this experiment, we measure the performance of a swarm of robots in detecting the source of a marine pollution 
plume. After programming a simulation that models this environment and altering the parameters of the swarm, it was 
found that having higher frequencies of better-performing archetypes is better than having more behavioral diversity, 
where better and worse-performing archetypes have almost the same count in a swarm. But this is not to say that all 
robots should be the same archetype or that behavioral diversity should be eliminated. This same concept should be 
tested in different applications, as the archetypes will definitely differ and the results may differ. With more experi-
mentation and testing, we can find more helpful archetypes, add new robot behaviors, and develop better distributions 
of robot archetypes to improve the swarm’s performance. 
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