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ABSTRACT 

Rover navigation currently relies on algorithms to automatically determine their path. This is because the distance 
from Earth to Mars means that real time communication is impossible. Current navigation algorithms have difficulties 
in identifying terrain, causing problems such as becoming stuck in soft terrain. Furthermore, the available computation 
power and memory are limited on a rover. This paper presents both a modified U-Net model to identify parts of the 
terrain and combining multiple classes to have less output classes. The proposed method was to combine classes like 
soil and bedrock into more generalized classes, like traversable and untraversable, to reduce memory usage and needed 
computational power. Combining the classes shows that a model can be trained faster, and in some cases even im-
prove. Testing this method on low resolution images has shown improved results in testing. After training, a three-
class model is able to yield a higher mIoU of 0.4583 on a test set compared to the full five-class model, which achieved 
0.3451. This method is non-specific to U-Net and can be applied to many different models. Combining this method 
with other models and larger datasets during training could be an option of improving the accuracy of models running 
on less processing power, allowing for use on platforms such as Mars rovers. 

Introduction 

Exploration on other planets is difficult to perform with humans due to the vast distances causing real-time commu-
nication to be impossible. NASA’s Mars rovers, for example, must have programs to detect when its path is unsafe. 
The conditions of a pre-planned route might be unknown until the rover is able to analyze its path, or conditions 
change. A full plan can only be uploaded to the rover approximately every one in three days. Therefore, onboard 
algorithms are needed for exploration and to supply the rover with autonomy during its exploration. Rovers also have 
limited processing power immediately available. [2] Much of the terrain needs to be assessed by operators, and en-
countering unexpected terrain is a large issue as it can immobilize a rover entirely. [3] There exist many similar 
projects on Earth. Self-driving cars utilize image segmentation to identify different elements of the road, such as 
painted lines and signs. [4] Multiple datasets and benchmarks have been made available for this purpose. [5] NASA 
has released a similar dataset for Martian images. The AI4Mars dataset contains images from the Spirit, Opportunity, 
and Curiosity rovers, labeled by a crowdsourcing effort. [1] The purpose of this database is to provide data for classi-
fication of different terrain to determine whether it is safe to drive on.  

This paper presents a modified U-Net architecture for image segmentation. U-Net was originally a biomedi-
cal image segmentation model, but it has high success rates in other image segmentation applications and is very well-
known. [6] This makes it a good starting point to test various methods. The AI4Mars dataset contains grayscale images 
of Martian terrain, along with labeled masks. The dataset contains five categories for classification of Martian terrain. 
[1] This model aims to accurately predict the category of terrain for each image and create an appropriate mask.
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Background 
 
Some previous methods have already been used on the dataset. When publishing the AI4Mars dataset, Michael Swan 
et al. used a DeepLabv3 model pre-trained on ImageNet for experimentation, as it was well-maintained, and its code-
base is relatively mature. Their model was trained using machines with two NVIDIA GeForce GTX TITAN X or two 
Tesla P100 GPUs and done over the MSL labels (labels made by the Mars Science Laboratory). Naively using this 
approach achieves high accuracy, around 94.97% on an unmodified random label set. This method also can misclassify 
big rocks as soil, which may cause the rover to attempt to drive over undrivable terrain and use relatively larger image 
sizes than the model presented in this paper. [1] 

Lihang Feng et al. proposes a different model called Mobile-DeepRFB. The model was based on DeepLab3+, 
the same model that Michael Swan et al. used in their naive approach. However, they modified the model to use the 
backbone from MobileNetV3 to reduce the number of parameters that the model needed, thereby also reducing pro-
cessing power. They also added a module called the Receptive field Block, which enhances features that are extracted 
by their model. Their model also takes 512x512 sized images. The model mIoU reaches 71.10%. [7][8] 

Steven Kay et al. compares two different models and their metrics in dealing with this task, namely U-Net 
and DeepLab3+. Each model had two different configurations tested. They also attempted to use SemanticStyleGAN 
to produce additional images, which was also added to the training dataset in two separate experiments to test how 
this would affect the performance. In the end, DeepLab3+ did end up outperforming the U-Net model. Notably, aug-
mentations by GaN increased the model mIoU as well. Our model presents a different method, which could be used 
in models like this one to improve results. [9] 

 

Dataset 
 
Table 1. Makeup of the used data. 
 

Category Soil Bedrock Sand Big Rock NULL 

Percent (ap-
prox.) 

20.10% 27.05% 6.27% 0.49% 43.20% 

 
Table 2. Makeup of the data with reduced classes. 
 

Category Traversable Untraversable NULL 

Percent (approx.) 47.15% 5.76% 43.20% 

 
The AI4Mars dataset contains some different data. First, it contains two separate sets for training and testing. The 
training set contains cleaned images that had some pre-processing to add masks. The testing labels were made from 
volunteers. There are different labels made from a single person, two people agreeing, or three people agreeing. The 
labels had five categories: soil, bedrock, sand, big rocks, and a null class. Finally, each label has separate masks for 
range and to indicate which parts of the image were of the rover itself, and not the terrain. Each input image was taken 
from Curiosity, Spirit, and Opportunity rovers, with Curiosity operated by MSL and Spirit and Opportunity operated 
by MER. Each of the images were taken from the NAVCAM mounted on the rover, along with additional data from 
other instruments. [1] This provides greyscale images that are 1024x1024 pixels in size. For this paper, only 
NAVCAM data from the MSL was used due to constraints discussed later. 
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It should be noted two experiments were carried out. One was with the full five classes provided by the labels, 
and the other was with three classes: Traversable, Un-traversable, and the null class. The reduction of classes was 
done to test reducing computation and increasing accuracy. 

Preprocessing for the images was already completed in the training images, so little additional preprocessing 
was done. The images were resized to 256x256 for training to reduce computational power. 

For the experiment with three classes, the soil and bedrock were classified as “traversable,” while the sand 
and big rocks were considered “untraversable.” This was because of multiple instances where the Mars rovers were 
stuck in pits of sand and would become trapped. [3] The general composition of each image differs greatly, with some 
images only containing null class, while others would be completely dominated by different classes. The total com-
position of the training images is shown in the above table, where some classes are more prominent than others. 
Notably, most of the images are composed of null class, while big rock accounts for less than 1% of the dataset. The 
dominance of null is expected, since each image consists of sky or faraway terrain, neither of which is actually defined 
and therefore falls under the null category. The lack of big rock examples, while not exactly unexpected, may have 
reduced the accuracy of models trained using this dataset. 

 

Methodology 
 

 
 
Figure 1. A picture of the unmodified U-Net architecture [5] 
 
The overarching structure resembles the original U-Net. [5] This model also contains expanding and contracting layers 
for encoding and decoding. Skip connections are also preserved, where images from the encoder sections are concat-
enated with the decoder input to preserve details. Each convolutional layer also has 3x3 kernels, with strides of size 
2, with two notable exceptions. All encoders feed into max-pooling layers, and decoders feed into upsampling layers.  

The modifications made to the model are changes to padding in the layers, the number of filters, and an extra 
layer at the start to act essentially as a “pre-processing” layer. The original U-Net had around four encoders and four 
decoders. Each encoder and decoder were specified to have zero padding, which caused each encoder/decoder to have 
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an output which is 4 pixels smaller in both width and height than the input. For this model, each convolutional layer 
was given padding which allows the input and output of the model to have the exact same shape. The model contains 
four encoders, each ending in a 2x2 pooling layer. This means four decoders, and there are two convolutional layers 
with no pooling between the encoders and decoders. The last layer of the model was a 1x1 convolutional layer. Each 
convolutional layer had ReLU activation, except for the last layer which used Softmax to optimize for classification. 
Two dropout layers were added between the second and third encoders, and the second and third decoders to prevent 
overfitting of the model. [10] Both models were trained on a NVIDIA Tesla T4 GPU.  

To reduce resource usage, instead of removing layers from the model, it was decided to try and remove extra 
classes from the output. The reduction of classes from five to three was done by a find and replace, and this was done 
as preprocessing of the dataset. It should be noted that only 1000 images from the training dataset were used for 
training due to limitations in available memory. This method is actually non-specific to this model and can be applied 
to different models. By targeting the specific goal of the rover, the data can be processed faster while hopefully achiev-
ing the same goal. 
 

Results 
 
Table 3. The final model metrics from both training and validation. Includes both three-class and five-class models. 
 

Metrics mIoU Dice Precision Recall Accuracy 

Three-label 
(training) 

0.6020 0.2350 0.8142 0.8068 0.8097 

Three-label 
(test) 

0.4583 0.3750 0.6629 0.6520 0.6663 

Five-label 
(training) 

0.6777 0.1843 0.9134 0.8879 0.8948 

Five-label 
(testing) 

0.3451 0.3967 0.6629 0.6385 0.6567 

 
Comparing both the models, they do perform similarly, but there are key differences. The full five-class model re-
quired much more epochs (around 200 epochs) and much more tuning to reach 80% accuracy whereas the smaller 
three-class model only needed 100 epochs to reach higher accuracy on the test set. Also notably, performance for each 
model drops in the training set compared to the testing set. The final three-class model was trained with 100 epochs 
while the final five-label model was trained with 200 epochs.  

For the full five-class model, notably, IoU is fairly low, and there was some mischaracterization of elements 
like soil and bedrock. It also has a high tendency to group large areas as one category. In Figure 3, the true mask lists 
most of the image as NULL, but the model will classify a huge portion as different classes. The most likely cause for 
this is the limited information that the model was given, namely the low resolution of the images. 

There were further concerns due to the small size of the dataset used to train it. Because of constant issues 
with aforementioned memory, the model’s output was reduced to three-classes to see if it would help increase overall 
accuracy. 
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Figure 2. Example of three-class model output. 
 

 
 
Figure 3. Example of five-class model output. 
 

 
 
Figure 4. Example of improved five-class model output. 
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The model was trained using the MSL provided training dataset, while all results were verified with the 

unprocessed volunteer dataset. Around 300 images were used for verification, with the labels requiring three volun-
teers to agree on the label. The number of images used for training and verification are the same. 

The three-class model is more consistent between training and testing, and it also seems to perform better 
overall for traversable and untraversable terrain during testing. It should be noted that the full five-class model seems 
to achieve higher precision and recall during training. 
 
Table 4. Class-specific IoU for the five-class model. 
 

Category Soil Bedrock Sand Big Rock NULL 

Training IoU 0.6993 0.8825 0.5632 0.3808 0.8626 

Testing IoU 0.4655 0.2870 0.3916 0.0035 0.5709 

 
Table 5. Class-specific IoU for the three-class model. 
 

Category Traversable Untraversable NULL 

Training IoU 0.7106 0.3986 0.6968 

Testing IoU 0.4392 0.3694 0.5663 

 

Discussion 
 
The results show that the reduction of classes seems to be effective. As mentioned, the three-class model is able to 
achieve either similar or better results from half the number of epochs. Both models were limited by the relatively 
small dataset used to train them, and the relatively low resolution of the images (256x256). There are some results 
that should be noted. For instance, the IoU for classes like Big Rock are significantly lower compared to NULL. This 
could be accounted for by the fact that the NULL class makes up a much more significant percentage of the dataset 
overall, which causes the model to be able to recognize those classes better. Coincidentally, by reducing the number 
of sets, this actually decreases this effect since smaller classes are grouped up with larger classes, thus combining the 
effective amount of training data.  

There is also a great difference between the training and testing metrics, implying overfitting. However, this 
should have been countered by the Dropout layers included in both models. This problem is likely another complica-
tion from the small dataset. There are many future improvements that could be applied to the model. First, training a 
model with a larger and more diverse dataset will likely give a better result. Second, increasing the resolution for the 
model input would also likely improve the result. Finally, being able to test a trained model on rover-specific hardware 
would also likely give a better idea of how this model would perform in the real world. 

Compared to methods like the one proposed by Lihang Feng et al., this model can reach similar mIoU metrics 
on the training dataset while working with images of a lower resolution. Furthermore, reducing the number of classes 
can be applied to a variety of models, and can be combined with the lightweight model they have proposed.  

This method does have a drawback, which is the lack of details. Reducing the number of classes means that 
the rover cannot immediately discern between different types of terrain. The previous proposed methods, such as the 
lightweight model proposed by Feng et al. and Swan et al., all have results at higher resolution and with much more 
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information. However, for applications like pathfinding, being able to discern potentially traversable areas is useful 
data for pathfinding algorithms. The rover is unable to use high power servers, so this method could still prove helpful. 
Applying this method to other models outlined in previous papers could help create an even more effective model that 
can be used on the mars rover.  

 

Conclusion 
 
This paper proposed combining a modified U-Net model and reducing the number of output classes for AI4Mars 
classification. Using grayscale images from rover’s NAVCAM, the model can generally give an indicator whether an 
area is traversable or untraversable. By reducing the number of classes, it helps reduce the number of epochs needed 
to train a model and helps it with smaller and lower resolution datasets. The results presented were limited by the 
available memory, resulting in a less accurate model. By training this model on a larger dataset or combining this 
method with other models may allow for useful results in navigation. The drawback to this method is the lack of other 
information, like what type of terrain that a certain area is. But knowing traversability still can be useful information 
for navigation. 
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