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ABSTRACT 

Bleached coral reefs, a result of environmental stress, signal a concerning decline in marine ecosystem health. Coral 
bleaching is a deadly process which reduces coral populations, causing world-wide environmental issues such as the 
loss of habitats for wildlife. These detrimental after-effects can be alleviated if the health status of corals are detected 
early, and when bleaching initially begins.  Existing coral bleaching detectors mostly rely on manual imaging and 
classifications, which are time-consuming and susceptible to human error. Therefore, deep learning techniques were 
employed to extract patterns and discern the health status of coral reefs from underwater images. We hypothesize that 
the accuracy and effectiveness of deep learning models in identifying coral bleaching events from underwater imagery 
are influenced by the underlying architectural design, with models leveraging deeper networks like VGG16 outper-
forming lighter models such as MobileNetV2 and ResNet50 in terms of recall and overall accuracy. A dataset with 
diverse underwater images of coral reefs was compiled. This consisted of 923 of total images, with the distribution as 
follows: 485 (53%) of images were bleached while 438 (47%) were healthy. We further evaluated the efficacy of 
different convolutional neural network models, including popular architectures like MobileNetV2, ResNet50, and 
VGG16. Through several experiments, VGG16 was found to be the most effective in accurately classifying coral 
health status, achieving the accuracy of 89.02, the highest among the tested models. 

Introduction 

Coral reefs are vital in tropical seas, forming the ecosystems which support significant portions of their oceanic pop-
ulation. It is estimated that coral reefs cover 0.1-0.5% of the oceanic floor (with supported findings of Spalding and 
Grenfell, 1997: 255,000 km2; Smith, 1978: 617,000 km2; Copper, 1994: 1,500,000 km2). Additionally, one-third of 
the world’s fish species rely and inhabit these reefs, which contributes to 10% of global fish consumption by humans. 
The global reliance on coral reefs is significant, with over 100 countries having coastlines containing these ecosystems, 
supporting the livelihoods and protein intake of tens of millions of people (Salvat, 1992). Jennings and Polunin (1996) 
emphasize the potential of actively growing reef areas, suggesting that 1 km2 could sustain over 300 people if no 
alternative protein sources were available [1]. 

Abundant in species and population, corals serve as a primary source of protein for millions in tropical coun-
tries while also providing shoreline protection [2]. After coral bleaching, coral reefs face multiple challenges: the 
reproductive success of dominant reef builders is jeopardized, leading to potential extinction, while habitat degrada-
tion favors genetically isolated clusters of smaller, resilient corals. Increased sea temperatures from climate change 
trigger coral bleaching, and human activities increase competition from seaweeds and predator populations, as a result 
of the decreased supply of these populations [3]. 

In many tropical regions, sea temperatures have risen almost 1°C over the past 100 years, whereas it is pre-
dicted that it will rise ~1-2°C each century. In the last 20 years, it was found that these rising temperatures expose 
corals to heat, resulting in a mass loss of zooxanthellae, a type of dinoflagellate living in their tissue which provides 
their energy as well as their color vibrancy [4]. The escalating number of coral reef bleaching occurrences, illustrated 
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with a surge in major events from 1979 to 1990 and widespread consequences including over 95% mortality in certain 
areas, present a major concern in marine ecology [5]. 

This extraction of this dinoflagellate not only lessens corals' visual appeal but also causes them to be vulner-
able to disease. This process is primarily resulting from climate change, specifically global warming, highlighting the 
urgent need for comprehensive measures to mitigate temperature rise and preserve the health of these intricate under-
water ecosystems [6]. 

Preventing coral bleaching is key in order to preserve marine biodiversity and sustain ecosystems supporting 
various underwater species. Coral reefs are important for the provision for fisheries, shoreline protection, and tourism. 
Identification involves monitoring for color changes, loss of vibrancy, and visible signs of stress. Early detection 
enables intervention to address and act upon these underlying conflicts with corals, and alleviate the detrimental effect 
on these underwater reefs [7]. 
 

 
 
Figure 1. Images of Healthy (1a, 1b, 1c, 1d) and Bleached (1e, 1f, 1g, 1h) Corals. The following presents eight total 
randomly chosen images from the dataset from the validation classification of images, four images being bleached 
corals and four being healthy. In this dataset, there were a total of 923 images with the distribution of 485 (53%) 
bleached coral images and 438 (47%) healthy coral images. 
 

Deep learning allows computational models with multiple processing layers to represent data to mirror how 
the human brain understands information. By capturing intricate structures within large-scale datasets, deep learning 
proves to be a versatile family of methods that includes neural networks, unsupervised and supervised feature learning 
algorithms. There has been a recent surge of interest in these techniques due to its accuracy and efficiency compared 
to previous techniques proved to perform less [8]. 

Convolutional neural networks (CNNs) are neural networks which incorporate a convolution operation as a 
fundamental layer, replacing the traditional fully connected layers. This has been proved to be successful, CNNs excel 
in scenarios where input data exhibits a grid like topology, such as time series (1-D grid) or images (2-D grid). Serving 
as a pivotal advancement in computer vision during the digital era, CNNs played a key role in propelling deep learning 
into contemporary applications [9]. 

In underwater image analysis, deep learning has emerged as a powerful tool, particularly in marine object 
detection and recognition [10]. Specifically, there has been similar works of image classification and deep learning 
used in underwater ecosystem situations, for the analysis of different fish species [11], as well as a similar project of 
the use of deep learning techniques and convolutional neural networks (CNNs) to understand the health status of coral 
reefs [12].  
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Deep learning techniques have demonstrated state-of-the-art results in various computer vision tasks, includ-
ing image classification, object detection, and scene understanding. The intricacies of marine ecosystems pose unique 
challenges for computer vision, making automated technologies crucial for effective analysis [13]. 

In conclusion, this study aimed to investigate the application of deep neural network based models in the 
early detection of coral bleaching in underwater imagery. The primary hypothesis of our work was to understand if 
depth and complexity of a convolutional neural network (CNN) significantly impacts its ability to accurately detect 
coral bleaching in underwater imagery, specifically in terms of recall, precision, and overall accuracy. Our findings 
show insights into the potential of deep learning techniques in the field of marine ecology. To achieve these findings, 
we used three convolutional neural network architectures with varying complexity: VGG16, ResNet50, and Mo-
bileNetV2. We achieved an accuracy rate of 89.02 percent using the VGG16 architecture, validating the hypothesis 
that a more complex model architecture with a larger number of parameters results in better performance. VGG16, 
the most complex model, has 138 million parameters, followed by ResNet50 with 25.6 million parameters, and Mo-
bileNetV2, the lightest model, with only 3.4 million parameters. Our study highlights the importance of leveraging 
cutting-edge technology to address the pressing challenge of coral bleaching, while underscoring the potential of deep 
learning in safeguarding the future of coral reefs and marine ecosystems. 
 

Results 
 
The objective of the experiments was to assess the impact of model architecture complexity on the ability of deep 
learning models to detect coral bleaching events from underwater imagery. Specifically, we aimed to determine 
whether deeper networks like VGG16 outperform lighter models such as MobileNetV2 and ResNet50 in terms of 
recall and overall accuracy. 

Three pre-trained models—MobileNetV2, ResNet50, and VGG16—were utilized. VGG16, the largest model 
with 138 million parameters, was hypothesized to outperform ResNet50 (25.6 million parameters) and MobileNetV2 
(3.4 million parameters). A dataset of 923 images (53% bleached coral, 47% healthy coral) was used, and hyperpa-
rameters such as learning rates (ranging from 0.000001 to 0.05) and epochs (spanning from 10 to 50) were adjusted 
to optimize performance. Recall and overall accuracy were used as key metrics, with recall being particularly im-
portant in this context due to its relevance in identifying bleached coral (i.e., minimizing false negatives). 
 

 
 
Figure 2. Results from experiments with the MobileNetV2 model are presented in this figure. The Multi-Line plot 
(2a) shows the results of hyper-parameter tuning on the validation dataset. X-axis represents the learning rate and y-
axis represents the accuracy value. Results from using different epoch values are represented by different lines in the 
graph where the legend describes the value of the epoch used. ROC Curve (2b) showing the performance of the model 
on the test subset. Confusion Matrix (2c) for MobileNetV2 calculated using the test dataset. 
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MobileNetV2 achieved a maximum accuracy of 79.27%, with a recall of 72.35%. While lightweight and 
computationally efficient, MobileNetV2 demonstrated lower overall performance across all metrics. ResNet50 
showed improved performance, achieving a maximum accuracy of 85.37% and a recall of 80.12%. This suggests that 
an increase in model depth and complexity led to enhanced detection capabilities. VGG16, as hypothesized, performed 
the best, achieving the highest accuracy of 89.02% and the highest recall of 84.65%.  
 

 
 
Figure 3. Results from experiments with the ResNet50 model are presented in this figure. The Multi-Line plot (3a) 
shows the results of hyper-parameter tuning on the validation dataset. X-axis represents the learning rate and y-axis 
represents the accuracy value. Results from using different epoch values are represented by different lines in the graph 
where the legend describes the value of the epoch used. ROC Curve (3b) showing the performance of the model on 
the test subset. Confusion Matrix (3c) for ResNet50 calculated using the test dataset. 
 

The best model from each pre-trained architecture is used to evaluate its performance on the test data (Table). 
The confusion matrix along with the ROC curves are reported for each model on the test data. Based on all the best 
data collected from each pre-trained model, it was found that the VGG16 model had the highest overall accuracy of 
89.02 supporting our hypothesis of a model with a larger number of parameters performing the best.  
 

 
 
Figure 4. Results from experiments with the VGG16 model are presented in this figure. The Multi-Line plot (4a) 
shows the results of hyper-parameter tuning on the validation dataset. X-axis represents the learning rate and y-axis 
represents the accuracy value. Results from using different epoch values are represented by different lines in the graph 
where the legend describes the value of the epoch used. ROC Curve (4b) showing the performance of the model on 
the test subset. Confusion Matrix (4c) for VGG16 calculated using the test dataset. 
 

Discussion 
 

Volume 14 Issue 1 (2025) 

ISSN: 2167-1907 www.JSR.org/hs 4



   
 

   
 

Experiments for each pre-trained deep learning model (MobileNetV2, ResNet50, VGG16) were conducted which 
obtained accuracies ranging from 48.78 to 89.02 percent in detecting the health status of coral reefs, demonstrating 
varying levels of effectiveness in classifying bleached and healthy corals. These experiments were held through dif-
ferent learning rates and epochs, which found that the VGG16 model outperformed both MobileNetV2 and ResNet50 
achieving the optimal accuracy of 89.02 percent. Generally, all models found low accuracies with instability at lower 
learning rates, whereas higher and stable accuracies were observed at varied, higher learning rates. 

In the case of MobileNetV2, the optimal learning rate for this task appears to be around 0.001, where the 
model achieves consistent and high performance across different epochs. Moderate learning rates allow for steady and 
stable learning without the risk of overfitting and underfitting too quickly. The performance at very low and very high 
learning rates illustrates the importance of choosing appropriate learning rate for the task and dataset at hand. It’s also 
clear that monitoring model performance across epochs is crucial for identifying the best point to stop training before 
overfitting occurs. 

The optimal learning rates for training the ResNet50 model on binary classification appear to be in the range 
of 0.0001 to 0.005, with 0.001 showing particularly stable and high performance across all epochs. These rates balance 
the speed of convergence with the risk of instability or overfitting. Very high learning rates (0.05) demonstrate the 
potential for rapid learning but at the risk of initial volatility. Conversely, very low rates (0.000001) are too conserva-
tive, requiring many epochs to reach comparable accuracy levels. The data underscores the importance of selecting a 
learning rate that aligns with the model’s complexity and the dataset’s characteristics to ensure efficient and effective 
learning. 
 
Table 1. Test results from the models: MobileNetV2, ResNet50, VGG16. 
 

Results MobileNetV2 ResNet50 VGG16 

Accuracy 79.27 85.37 89.02 

Precision 76.32 52.75 69.44 

Recall 79.07 100.00 77.08 

 
The performance of the VGG16 model for binary classification across various learning rates and epochs 

reveals critical insights into its learning dynamics. Initially, at very low learning rates (0.000001, 0.00001), the model 
shows minimal improvement, struggling to significantly learn from the data, which is evident from the stagnant per-
formance at the lowest rate and modest gains at the slightly higher rate. However, as the learning rate increases to 
moderate levels (0.0001, 0.001), there’s a notable improvement in accuracy, demonstrating the model’s capacity to 
effectively learn and adapt to the dataset with an optimal learning rate around 0.001 and 0.005, where it achieves its 
peak performance (89.02 at 20 epochs for 0.005). Surprisingly, at high learning rates (0.01, 0.05), the model’s perfor-
mance becomes inconsistent, peaking at mid-epochs before deteriorating, which could indicate issues related to over-
fitting or the inability to stabilize due to the aggressive learning rates. 

Analyzing the validation results across MobileNetV2, ResNet50, and VGG16 for binary classification reveals 
how each architecture responds to different learning rates. Common across all models is the identification of an opti-
mal learning rate range that maximizes performance while minimizing risks such as overfitting and underfitting. For 
MobileNetV2, a learning rate around 0.001 is identified as optimal, emphasizing the model to achieve high and stable 
performance without rapid overfitting. ResNet50 displaying a slightly broader optimal range from 0.0001 to 0.005, 
suggests flexibility in adapting to various rates efficiently. The optimal learning rate for VGG16 is typically identified 
as around 0.01. This value was chosen to promote the model’s ability to achieve consistent and high performance 
while mitigating the risk of overfitting. All models demonstrate diminished performance at very low learning rates, 
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highlighting the slow convergence and inefficiency of overly conservative learning strategies. At high learning rates, 
the models exhibit either volatility or a sharp decline in performance beyond mid-epochs, underscoring the delicate 
balance required to avoid overfitting while still encouraging robust learning. These findings show the critical role of 
learning rate optimization in model training, underscoring a shared principal across different architectures. Moderate 
learning rates tend to offer the best balance between convergence, speed and accuracy, although the specific optimal 
point varies slightly with each model’s unique characteristics.  

It is important to consider several factors and limitations that could influence outcomes. Firstly, the diversity 
and the size of the dataset play crucial roles in the training process. A limited dataset may not capture the full variability 
of the classes involved, potentially skewing model performance and generalization capability. Future experiments 
could benefit from larger and more diverse datasets to ensure models are well-generalized and robust against overfit-
ting. Additionally, investigating how these models perform across a wider range of tasks and in more complex, real-
world scenarios could further validate the generalizability of these findings.non proident, sunt in culpa qui. 
 

Materials and Methods 
 
The dataset used for the experiments was found at a public domain source providing images of healthy and bleached 
corals collected from underwater sites. This consisted of 923 of total images, in which the images were distributed as 
follows: 485 (53%) of images were bleached while 438 (47%) were healthy. After the images were correctly classified 
into their respective categories, the data was split into three groups when uploaded into Google Drive: 10% of images 
for the validation dataset, 10% of images sorted for the testing dataset, and 80% of the images were used for the 
training dataset.  
 

 
 
Figure 5. Flowchart Process. The following diagram exhibits the creation process of the final product of this image 
classification. 
 

Firstly, three pre-trained deep learning models were chosen (MobileNetV2, ResNet50, VGG16) for model 
evaluation. These Keras convolutional neural networks (CNNs) were selected for evaluation due to their popular use 
for image classification. 

MobileNetV2 is a neural network designed to be lightweight and efficient, making it ideal for applications 
on mobile devices with limited resources. This efficiency is achieved through unique convolutional operations, reduc-
ing computational demands while maintaining good performance. 

ResNet50 is a deep neural network used for its depth and the introduction of residual connections. These 
connections address challenges associated with training very deep networks, enabling the model to effectively capture 
complex features. Particularly, this is powerful for image classification tasks on large and diverse datasets. 
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VGG16, a straightforward and effective neural network architecture, has a strength which lies in its uniform 
structure with stacked convolutional layers and max-pooling layers, allowing it to capture intricate patterns in images. 
VGG16 is often used for transfer learning, leveraging pre-trained weights on large datasets for tasks with smaller 
datasets. 

These models were tuned by varying the hyper-parameters learning rate and epochs, where the following 
combinations were used: learning rates of 0.000001, 0.00001, 0.0001, 0.001, 0.005, 0.01, 0.05 and epochs of 10, 20, 
30, 40, 50, with a batch size of 32. The model with the highest validation accuracy was saved and used for evaluating 
the test subset of the dataset. Through the comparisons of these accuracies (Table 1) from different deep learning 
models, it was found that VGG16 had the highest accuracy of 89.02 with the combination of an epoch of 20 and a 
learning rate of 0.005.  

In the process of the creation of this app, Google Colaboratory was used for all experiments. TensorFlow and 
Keras were employed as the primary deep learning frameworks [14], with the latter benefiting from pre-trained models 
available for various applications. Python served as the programming language, supported by essential libraries such 
as NumPy [15] for numerical operations. Additionally, Matplotlib [16] played a crucial role in visualizing and inter-
preting the results, enhancing the overall analytical capabilities of the development process.  
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