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ABSTRACT 

Game theory is a complex area of study based on principles of mathematics and statistics. Simple, two-player games 
such as the Prisoner’s Dilemma demonstrate the basics of probabilities, outcomes, and payoff matrices. Often, game 
theory involves games of complete information, where all information is known to all players. Bayesian games explore 
a specific type of multiplayer game, called games of incomplete information, where some information about the play-
ers or the game is unknown. This study analyzes Bayesian games with unknown player identities. The study uses the 
Prisoner’s Dilemma as a basis for game theory payoff matrices. The Prisoner’s Dilemma is then used as a simple 
Bayesian game example, followed by a more detailed analysis of the Sheriff’s Dilemma. The study shows that prob-
abilities are much more complex in Bayesian games than in games of complete information. The results demonstrate 
that the ideal strategy of a player could depend on multiple factors in a Bayesian game. The study concludes that 
ethical considerations are a significant factor in Bayesian games, and this type of analysis can be applied to a variety 
of fields. Broader applications include studies in economics, sociology, law, and many other fields. 

Introduction 

People make many choices that can be affected by various factors, such as other people, internal or external biases, 
etc. We use game theory to mathematically analyze a person’s choices and outcomes in these situations. 

Game Theory 

Game theory is a topic of mathematics involving payoff matrices for players’ decisions in certain situations. These 
payoffs can be interpreted as benefits—positive results—or costs—negative results. Game theory applies to multi-
player situations where each player’s outcome depends not only on their actions but also on the actions of other play-
ers. Game theory is relevant to a plethora of fields: biology, business, psychology, politics, finance—the list goes on. 
Situations range from business decisions about lowering prices to moral decisions about whether to confess a crime. 
Game theory can be useful for evaluating the advantages and disadvantages of certain choices and for analyzing the 
ways in which the human brain makes decisions (Romanowski 2014). 

Invented by Hungarian-American mathematician John von Neumann, game theory began as an extension of 
poker strategies. The concept then extended to warfare, representing conflicts between the United States and the Soviet 
Union in the Cold War. As game theory gained popularity, mathematicians began experimenting with different types 
of games and their characteristics (Chen et al.). 

Games defined by game theory payoff matrices adhere to certain rules. Each player has a set number of 
choices to make, independent of the other players, but they must consider the choices and outcomes of other players. 
There is a winner or a loser, determined after a certain number of moves have been made, and players either have a 
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benefit or a cost. In some games, players are aware of all the information in the game, and in others, players lack some 
knowledge during play. Strategies vary for each type of game (Romanowski 2014). 

The simplest type of game is a zero-sum game with just two players. In a zero-sum game, the benefits and 
costs perfectly balance each other, and the sum of the players’ outcomes for any given decision is zero. Zero-sum 
games with two players are the least complex because an ideal approach for each player can be easily determined by 
simply comparing the payoffs—this is commonly referred to as the Minimax Theorem. There are also more complex 
games called nonzero-sum games, which are much more common in realistic life situations. The benefits and costs 
are not necessarily equal in magnitude, and the Minimax Theorem cannot be applied because the probabilities are 
more complex (Romanowski 2014). 
 
The Prisoner’s Dilemma 
 
One popular example of a nonzero-sum game with two players is the Prisoner’s Dilemma. In this scenario, two people 
are being held in prison for a crime that the police know they have committed, but they don’t have substantial evidence 
to keep them in prison for a long time. Each prisoner, or player, has the choice to confess and turn the other in or keep 
quiet (Ross 2023). In the payoff matrix below, the payoffs are on a scale from 0 to 10 of how good or bad the situation 
would be for each player, 0 being very bad and 10 being very good. If neither player confesses, both experience a 
good situation. If both confess, they experience a mild situation. If only one player confesses and the other doesn’t, 
the one who confesses experiences a very good situation, and the one who does not confess experiences a very bad 
situation. The best strategy for each player in this dilemma, underlined in the matrix, is to confess because the situation 
is better in each scenario, no matter what choice the other player makes—5 is better than 0, and 10 is better than 8. 
This simple example not only demonstrates the basics of logic behind game theory but also highlights the connection 
between game theory and moral reasoning: in some situations, players might consider whether a choice is not just 
beneficial to them but also whether it is morally right. 
 
Table 1. Payoff matrix for the Prisoner’s Dilemma. 
 

 
 
 
Player 1 

Player 2 

 Confess Don’t Confess 

Confess 5, 5 10, 0 

Don’t Confess 0, 10 8, 8 

 
One important detail of The Prisoner’s Dilemma and other similar games is that these are games of “perfect 

information,” where the players know all possible moves, outcomes, and characteristics of the other players (Ro-
manowski 2014). What would happen if there were multiple types of players with different payoff matrices? What if 
each player wasn’t aware of the other players’ types, and therefore couldn’t make a fully informed decision? These 
questions and complexities are explored with the concept of Bayesian games—games of incomplete information in 
which players must consider the probabilities of other players being certain types. Bayesian games more accurately 
model real-life situations because, in reality, most people don’t have complete knowledge of every complexity in a 
given situation (Zamir 2009). This paper will explore these complexities, analyze examples of Bayesian games, show 
calculations of probabilities, and discuss moral and ethical implications. 
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The Prisoner’s Dilemma as a Bayesian Game 
 
The Prisoner’s Dilemma can be represented as a Bayesian game if we introduce incomplete information, such as an 
unknown player type. In this example, we will assume that one player isn’t sure if the other player is altruistic. Let’s 
say that Player 2 is not altruistic, so their payoffs are the same in every scenario. Their ideal strategy is still to confess. 
However, Player 1 could be altruistic or could be not altruistic. If Player 1 is altruistic, they will always prefer to not 
confess because, for moral reasons, they choose to be selfless and do not want to convict the other player—4 is better 
than 2, and 9 is better than 6. If Player 1 is not altruistic, the payoff matrix is the same as in the previous example, 
when both players were assumed to be not altruistic, and Player 1 would prefer to confess. 
 
 
Table 2. Payoff matrix for when Player 1 is altruistic. 
 

 
 
 
Player 1 

Player 2 

 Confess Don’t Confess 

Confess 2, 5 6, 0 

Don’t Confess 4, 7 9, 9 

 
Table 3. Payoff matrix for when Player 1 is not altruistic. 
 

 
 
 
Player 1 

Player 2 

 Confess Don’t Confess 

Confess 5, 5 10, 0 

Don’t Confess 0, 10 8, 8 

 
The ideal strategy for Player 2 is more complex in this game. In the second payoff matrix, the ideal strategy 

for both players is still to confess. However, in the first payoff matrix, Player 2’s strategy can only be determined by 
remembering that Player 1 will always choose to not confess. Then, we can modify the payoff matrix. 
 
Table 4. Payoff matrix for when Player 1 is altruistic, some options crossed out. 
 

 
 
 

Player 2 

 Confess Don’t Confess 
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Player 1 Confess 2, 5 6, 0 

Don’t Confess 4, 7 9, 9 

 
If Player 2 knows that Player 1 will not confess, then they will also choose to not confess—9 is better than 

7, and the ideal choice for each player is to not confess, as shown in underlined in the matrix above. However, if 
Player 2’s best choice could either be to confess or to not confess depending on Player 1’s type, their ideal strategy is 
not obvious, so we can use probabilities. Assume that the probability of Player 1 being altruistic is p, and the proba-
bility of Player 1 being not altruistic is 1-p. The expected payoff of Player 2 confessing or not confessing can be 
calculated in terms of p. For confessing, we can multiply the payoff of confessing when Player 1 is altruistic, 7, by 
probability p, and add that to the product of the payoff of confessing when Player 1 is not altruistic, 5, and probability 
1-p, as shown below. 

Player 2’s expected payoff for confessing: 
7𝑝𝑝 + 5(1 − 𝑝𝑝) = 2𝑝𝑝 + 5  

This method can be repeated to calculate Player 2’s expected payoff for not confessing: 
9𝑝𝑝 + 0(1 − 𝑝𝑝) = 9𝑝𝑝 

Finally, we can set these payoffs equal to each other to determine Player 2’s ideal strategy: 
2𝑝𝑝 + 5 = 9𝑝𝑝 

5 = 7𝑝𝑝 
𝑝𝑝 = 5/7 

If 𝑝𝑝 > 5/7, Player 2 should confess. If 𝑝𝑝 < 5/7, Player 2 should not confess. If 𝑝𝑝 = 5/7, Player 2 could 
make either choice. 

By turning the Prisoner’s Dilemma into a Bayesian game, we can see the complexities of multiple types of 
players with varying strategies. This example may more accurately reflect reality because a person’s reasoning in this 
situation could greatly vary depending on their moral compass or other factors. 
 

Case Study: Sheriff’s Dilemma 
 
We can further analyze the ethics of Bayesian games through the Sheriff’s Dilemma. In this scenario, the two players 
are a sheriff and a suspect, both choosing whether to shoot the other player. There are some underlying assumptions 
about each player’s preferences. The sheriff prefers to make the same choice as the suspect; if the suspect chooses to 
shoot, the cop would like to as well, but if the suspect chooses not to shoot, the cop would not like to shoot. On the 
contrary, the suspect’s preferences depend on which type of player they are: guilty or innocent. The guilty suspect 
prefers to shoot no matter what, and the innocent suspect prefers to not shoot no matter what. The primary complexity 
of this example is that the sheriff does not know whether the suspect is innocent or guilty. To start, we can see the 
payoff matrices for each scenario (innocent suspect or guilty suspect). 
 
Table 5. Payoff matrix for the guilty suspect. 
 

 
 
 
Suspect 

Sheriff 

 Shoot Don’t Shoot 

Shoot 0, 0 5, -3 
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Don’t Shoot -6, 2 -3, 4 

 
Table 6. Payoff matrix for the innocent suspect. 
 

 
 
 
Suspect 

Sheriff 

 Shoot Don’t Shoot 

Shoot -3, -5 -2, -4 

Don’t Shoot -2, -7 0, 0 

 
Similar to the last example, the sheriff’s ideal strategy is not immediately clear based on the payoff matrices, 

so we have to account for the preferences of the suspect—the innocent suspect will not shoot, but the guilty suspect 
will. We can therefore modify the payoff matrices. 
 
Table 7. Payoff matrix for the guilty suspect, some options crossed out. 
 

 
 
 
Suspect 

Sheriff 

 Shoot Don’t Shoot 

Shoot 0, 0 5, -3 

Don’t Shoot -6, 2 -3, 4 

 
Table 8. Payoff matrix for the innocent suspect, some options crossed out. 
 

 
 
 
Suspect 

Sheriff 

 Shoot Don’t Shoot 

Shoot -3, -5 -2, -4 

Don’t Shoot -2, -7 0, 0 

 
Using the same method as the previous example, we can determine the sheriff’s ideal strategy using proba-

bilities. Let p represent the probability that the suspect is guilty, and let 1-p represent the probability that the suspect 
is innocent. 
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Sheriff’s expected payoff for shooting: 
0𝑝𝑝 − 7(1 − 𝑝𝑝) = 7𝑝𝑝 − 7  

Sheriff’s expected payoff for not shooting: 
−3𝑝𝑝 + 0(1 − 𝑝𝑝) = −3𝑝𝑝 

Again, we can set these payoffs equal to each other to determine the sheriff’s ideal strategy: 
7𝑝𝑝 − 7 = −3𝑝𝑝 

10𝑝𝑝 = 7 
𝑝𝑝 = 7/10 

If 𝑝𝑝 > 7/10, the sheriff should shoot; if 𝑝𝑝 < 7/10, Player 2 should not shoot, and if 𝑝𝑝 = 7/10, the sheriff 
could make either choice. In other words, if there is more than a 70% chance the suspect is guilty, it is in the sheriff’s 
best interest to shoot. If there is less than a 70% chance the suspect is guilty, the sheriff should not shoot. If there is a 
70% chance the suspect is guilty, neither choice is better. 
 
Ethical Considerations 
 
As mentioned above, the Sheriff’s Dilemma example concludes that logically, the sheriff should choose to shoot the 
suspect if there is more than a 70% chance the suspect is guilty. However, in real life, the sheriff would have a heavy 
personal bias guided by their moral compass. Ethically, a sheriff may not want to shoot a suspect if there is even a 1% 
chance the suspect is innocent. In addition, killing someone without complete certainty that they are guilty could leave 
lasting guilt and a desire to know the truth. These factors represent an aspect of decision-making not reflected by the 
conclusions from the payouts above. 

From another perspective, a sheriff may feel a compulsive need to protect themselves if there is a chance the 
suspect could shoot. Rather than take the risk of getting shot, a sheriff may choose to shoot because of their self-
defensive instinct. 

These unmeasurable biases could dramatically affect the probability of the sheriff making certain decisions. 
While studying these scenarios, it is important to recognize these ethical considerations. 
 

Conclusion 
 
From this study, we can draw conclusions about the applications of Bayesian games. We can use game theory analysis 
to determine probabilities based on payoff matrices, adjust the payoffs for given situations or parameters, and use the 
results to determine the ideal plan of action for players in different games. We can also recognize the ethical consid-
erations of scenarios such as the Sheriff’s Dilemma and the impact of internal biases. 

This application of analytical thinking can extend beyond games into complexities of business, economics, 
law, political science, sociology, and more. Statisticians use principles of game theory to make predictions, economists 
to analyze financial decisions, and sociologists to draw conclusions about human behavioral tendencies. 
 

Limitations 
 
The primary limitation of our study of Bayesian game theory is its oversimplification of reality. To most accurately 
simulate a real situation, game theorists would need to create extremely complex scenarios with many more players 
and outcomes. However, our models provide valuable insights into the basics of Bayesian game theory and ways to 
study its principles. 
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