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ABSTRACT 

Star formation rates (SFRs) are pivotal for understanding the growth of stars, galaxies, and the universe. Understand-
ing SFR is essential for insights into galaxy evolution, stellar populations, cosmology, and interstellar dynamics. SFR 
analysis is well-suited to machine learning due to its complexity and volume of data. In our study, we utilized machine 
learning models on a dataset containing various factors such as gas luminosity, star formation timescale, and metal-
licity to predict SFRs. Our models included Linear Regression, Lasso Regression, and a neural network. Both Linear 
Regression and Lasso Regression yielded low mean squared error values, with the neural network achieving even 
lower values, demonstrating the superior performance of deep learning in determining SFRs. Additionally, we as-
sessed feature importance for the Linear and Lasso Regression models, identifying which factors most significantly 
influence SFR predictions. From our analysis, we concluded that the aforementioned factors are crucial for accurately 
identifying SFRs in a galaxy, as our results showed that machine learning can predict SFRs with a mean squared error 
of 0.000939 and R-squared of 0.4808 based on galactic properties. Furthermore, we used graphs to illustrate the rela-
tionships between SFRs and different galactic properties, providing visual evidence of these connections. Our findings 
underscore the potential of machine learning in astrophysical research, particularly in predicting and understanding 
the intricate processes that govern star formation in various galactic environments. This approach can significantly 
enhance our comprehension of the universe's evolution. 

Introduction 

The formation of stars is a fundamental process that shapes the evolution of galaxies and the universe as a whole. 
Understanding the star formation rate (SFR) is crucial for astrophysics, as it provides insights into the lifecycle of 
galaxies, the interstellar medium (ISM), and the distribution of matter in the cosmos. Traditionally, determining the 
SFR involves complex techniques and theoretical models, which can be time-consuming and require extensive human 
expertise. However, recent advancements in artificial intelligence (AI) and machine learning (ML) offer a novel ap-
proach to tackling this challenge. 

From Calzetti et al. 2007, we learn that there are many factors affecting star formation rate, including dust 
mass, dust attenuation, luminosity, and different factors of the ISM. From Moustakas et al. 2005, we learn of other 
factors influencing star formation rates, such as metallicity, ionization, and redshift. Finally, McKee et al. 2007 shows 
how turbulence, magnetic fields, and dust and gas density also affect star formation rates. This study will investigate 
some of these factors using machine learning.  

AI, particularly deep learning, has shown remarkable success in various fields by leveraging large datasets 
to uncover patterns and make predictions. In astrophysics, the application of AI is still in its initial stages but is rapidly 
gaining traction. The potential of AI to process vast amounts of data, identify correlations, and predict outcomes with 
high accuracy makes it a valuable tool for determining the SFRs. By analyzing data derived from the spectral energy 
distributions (SEDs) of galaxies, AI can speed up the normally tedious process of estimating SFR. 
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 This research paper explores the development and implementation of an AI-based framework to estimate the 
SFR from astronomical data. We employ a Linear Regression model, a Lasso Regression model, and a Neural Net-
work, trained on a dataset containing galaxy information and corresponding SFRs derived from established methods, 
to predict the SFR directly from galactic information. Our approach aims to bridge the gap between traditional methods 
and modern computational techniques, providing a scalable and efficient solution for astronomers. 
 V. Bonjean et al. 2019 trained a Random Forest model on SDSS-DR8, using redshifts, WISE Luminosities, 
WISE colors in the near-IR, and spectra-extracted SFR and Stellar Mass. This model was trained on redshift (z) levels 
of 0.01 < z < 0.3, and obtained a standard deviation of 0.38 dex for SFR and 0.16 dex for Stellar Mass. This method 
accurately predicted star formation rates without the need for complex modeling and only required the previously 
mentioned inputs. However, for galaxies with a redshift outside of this range, the model proved inaccurate. 
 Surana et al. 2020 trained a deep learning model on the GAMA Panchromatic Data Release to emulate the 
MagPhys model. Multiband flux measurements and the redshift were used to predict galactic properties such as stellar 
mass, dust luminosity, and star formation rates. This model produced standard deviation of 0.0577 for stellar mass 
prediction, 0.1643 for star formation rate prediction, and 0.1143 for dust luminosity prediction. This model proved 
much faster than the current MagPhys model, taking 0.03% of the time to predict factors for the same number of 
galaxies. 
 

Background 
 
Our models will look to use the derived MagPhys results as a labeled dataset to predict star formation rates. Our 
research will not use spectroscopic measurements, flux measurements, or redshift, and will instead use the derived 
characteristics of galaxies to predict the star formation rate. This will indicate how accurate machine learning with the 
MagPhys model is at discovering the importance of factors affecting star formation rates. It will also hold for a larger 
region of redshift than 0.01 < z < 0.3, as the MagPhys DMU from GAMA is determined for galaxies in z > 0.001. By 
expanding the redshift range, our study aims to better understand star formation over more of the universe's history. 
We will examine various galactic features such as metallicity, gas, and dust mass, and the galaxy’s environment to 
see how they influence star formation rates. 
 

Dataset 
 
For this project, we used the Galaxy and Mass Assembly (GAMA) Survey (Driver et al. 2022). This dataset is a 
spectroscopic survey of ~300000 galaxies, building on previous spectroscopic surveys such as the Millenium Galaxy 
Catalogue (J. Liske et al. 2003), the 2dFGRS (Colless M.M. 1999), and the Sloan Digital Sky Survey DR8 - (Eisenstein 
et al. 2011). The survey has a number of Data Management Units (DMUs), from which MagPhysv06 from GAMA II 
was selected. MagPhys (da Cunha et al. n.d.) is a model used to analyze spectral energy distributions (SEDs) to deter-
mine a number of characteristics, including but not limited to the age of the oldest stars in the galaxy, the star formation 
timescale, and the metallicity of the galaxy. GAMA’s MagPhys DMU contains only the galaxies with redshift greater 
than 0.001, and thus contains data for 197494 total galaxies.  
 Due to computational limitations and network issues, we were only able to download 30000 galaxies from 
the MagPhys DMU, and therefore were only able to train our models on 30000 datapoints. Each galaxy had 18 pa-
rameters, shown in Table 1. 
 
Table 1. Each galactic property derived from the MagPhys model and their definition. 
 

Label: Definition: 
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fmu(Opt) fraction of total dust luminosity contributed by dust in the ambient (diffuse) 
ISM, optical 

fmu(IR) fraction of total dust luminosity contributed by dust in the ambient (diffuse) 
ISM, infrared 

tform/yr age of the oldest stars in the galaxy 

gamma star formation timescale (in Gyr) 

𝑍𝑍 𝑍𝑍𝑜𝑜⁄  metallicity Z 

tauV total V -band optical depth of the dust seen by young stars in their birth 
clouds 

mu fraction of tauV contributed by dust in the ambient (diffuse) ISM 

𝑀𝑀 ∗/𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠 Stellar mass 

SFR(1e8) Star formation rate, multiplied by 100 million 

𝐿𝐿𝑑𝑑 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠⁄  Total stellar luminosity 

𝜉𝜉𝑐𝑐
ISM fractional contribution by cold dust to the dust luminosity of the ambient 

ISM 

𝑇𝑇𝐶𝐶
BC/K equilibrium temperature of warm dust in stellar birth clouds, in Kelvin 

𝑇𝑇𝐶𝐶
ISM/K equilibrium temperature of cold dust in the ambient ISM, in Kelvin 

𝜉𝜉𝑃𝑃𝑃𝑃𝑃𝑃
BC  

fractional contribution by Polycyclic Aromatic Hydrocarbon (PAHs) to the 
dust luminosity of stellar birth clouds 

𝜉𝜉𝑀𝑀𝑀𝑀𝑀𝑀
BC  

fractional contribution by the hot mid-infrared continuum to the dust 
luminosity of stellar birth clouds 

𝜉𝜉𝑊𝑊
BC 

fractional contribution by warm dust in thermal equilibrium to the dust 
luminosity of stellar birth clouds 

𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑀𝑀𝑜𝑜⁄  Total mass of dust 

 
Many of these features are critical to understanding the star formation rate (SFR) of a galaxy. For instance, 

large dust luminosity or dust mass values (Cucciati et al. 2012) could lead to an increased SFR, as a larger amount of 
dust can provide the necessary conditions for more frequent star formation. Dust can shield newly forming stars from 
harsh radiation, allowing them to accumulate mass and grow. Metallicity, which refers to the abundance of elements 
heavier than hydrogen and helium, plays a crucial role (Yates et al. 2012) - higher metallicity can enhance cooling 
processes in molecular clouds, promoting star formation. Furthermore, the star formation history of a galaxy offers 
valuable context (Boquien et al. 2014), as galaxies with a history of active star formation are likely to continue forming 
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stars at a significant rate. The age of the oldest stars in a galaxy also provides insights (Graus et al. 2019), as older 
stellar populations can influence the current interstellar medium's dynamics and composition. Values such as the equi-
librium temperature of the ISM and the contribution of Polycyclic Aromatic Hydrocarbons (PAHs) could influence 
the star formation rate (Peeters et al. 2004), as cooler dust will collapse to form stars easier than hotter dust. By 
examining these features, we gain a comprehensive understanding of the factors driving SFR, allowing us to predict 
future star formation activity more accurately. This holistic approach highlights the interplay between various galactic 
properties and underscores the complexity of modeling SFR.  
 

 
 
Figure 1. Plots of star formation rate against the age of the oldest stars, star formation timescale, contribution of warm 
dust to dust luminosity, and dust mass 
 

Methods 
 
For our data, we took the MagPhys output by assigning our X-values to all columns excluding the star formation rate, 
and our y-values to the star formation rate. We then split our data halfway, 50% being training and 50% being testing, 
and assigned a random state of 42.  

In our research, we leverage linear regression to analyze the relationship between a continuous dependent 
variable (y) and one or more independent variables (x). This statistical method is expressed through the equation 𝑦𝑦 =
𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3 + 𝛽𝛽4𝑥𝑥4 + ⋯+ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 + 𝜖𝜖, where the variables represent the following values as shown in 
Table 2. 
 
 

Volume 13 Issue 4 (2024) 

ISSN: 2167-1907 www.JSR.org/hs 4

https://academic.oup.com/mnras/article/490/1/1186/5572487
https://iopscience.iop.org/article/10.1086/423237


   
 

   
 

Table 2. Variable Names for Linear Regression 
 

Variable: Definition: 

y predicted value of our dependent variable (star formation rate) 

β₀ Intercept 

βn Coefficient of the independent variable (indicates the change in y per unit 
change in x) for each independent variable 

ε Error term (represents the difference between actual and predicted values) 

 
We employ linear regression to uncover the strength and direction of the linear association between the var-

iables. By minimizing ε, we establish the best-fitting straight line that explains the relationship between x and y. This 
technique allows us to predict y, in our case the star formation rate, for new data points within the modeled range of 
X, which are our other galactic features.  
 In addition to standard linear regression, we also utilize Lasso (Least Absolute Shrinkage and Selection Op-
erator) regression (Tibshirani 1996), a variation of linear regression that enhances model performance by incorporating 
regularization. Lasso regression modifies the linear regression equation by adding a penalty term to the loss function, 
which is the sum of the absolute values of the coefficients, modeled by the equation 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3 +

𝛽𝛽4𝑥𝑥4 + ⋯+ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 + 𝜆𝜆 ∑
𝑗𝑗=1

𝑝𝑝
|𝛽𝛽𝑗𝑗| + 𝜖𝜖, where the additional variables represent the following values as shown in Table 3. 

 
Table 3. Additional Variables in Lasso Regression 
 

Variable: Definition: 

λ Regularization parameter that controls the strength of the penalty 

𝜆𝜆 ∑
𝑗𝑗=1

𝑝𝑝
|𝛽𝛽𝑗𝑗| Sum of the absolute values of the coefficients 

 
The penalty term in Lasso regression has several key benefits: it can reduce some coefficients to zero, effec-

tively selecting the most significant features and improving model interpretability by focusing on fewer, more relevant 
variables. Additionally, by penalizing large coefficients, Lasso regression helps prevent overfitting, especially in high-
dimensional data. This approach allows us to better manage data complexity, identify crucial galactic features, and 
enhance the accuracy and robustness of our star formation rate predictions. 
 In our research, we use a neural network to study the relationship between the star formation rate (our de-
pendent variable, y) and various galactic features (our independent variables, x). Neural networks are ideal for this 
task because they can capture complex, non-linear relationships that simpler methods might miss. This allows us to 
make more accurate predictions and gain better insights into what influences star formation. 
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 A neural network consists of layers of interconnected neurons. Each neuron applies a linear transformation 
followed by a non-linear activation function to its input. This allows the network to learn patterns in the data. The 
network is trained by adjusting the weights and biases of the neurons to minimize a loss function, which measures the 
difference between predicted and actual values. We also use two activation functions in our neural network, which are 
ReLU (Agarap 2018) and Sigmoid (Sharma et al. 2020). 
 ReLU (Rectified Linear Unit) introduces non-linearity by outputting zero for negative inputs and the input 
itself for positive inputs. The function is defined as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑥𝑥), where if x > 0, f(x) = x, and otherwise, 
f(x) = 0. This property helps the network learn complex patterns and mitigates the vanishing gradient problem, which 
is common in deep networks. Most of our layers use ReLU to add the necessary non-linearity and improve learning 
efficiency. Sigmoid normalizes the output to a range between 0 and 1, making it useful for certain layers where output 
values need to be bounded. For very large positive x values, the function goes to 1, and for very large negative x 
values, the function goes to 0. For x = 0, the function is at 0.5. The function is defined as 𝜎𝜎(𝑥𝑥) = 1

1+𝑒𝑒−𝑥𝑥
. By normal-

izing the outputs, Sigmoid helps control the data's range as it passes through the network, particularly in layers where 
we want the output to represent probabilities or scaled values. 
Our neural network has the following structure, where Wi and bi are the weights and biases for each layer: 
 
Table 4. Hidden Layers for Neural Network 
 

Layer: Neurons: Activation: Transformation: 

Input 16 N/A N/A 

1 186 ReLU h1 = ReLU(W1 * x + b1) 

2 186 ReLU h2 = ReLU(W2 * h1 + b2) 

3 93 ReLU h3 = ReLU(W3* h2 + b3) 

4 93 Sigmoid h4 = Sigmoid(W4 * h3 + b4) 

5 93 ReLU h5 = ReLU(W5 * h4 + b5) 

6 62 ReLU h6 = ReLU(W6 * h5 + b6) 

7 62 Sigmoid h7 = Sigmoid(W7 * h6 + b7) 

8 62 ReLU h8 = ReLU(W8 * h7 + b8) 

Output 1 N/A y = W9 * h8 + b9 

 
To train our neural network, we used the RMSProp (Root Mean Square Propagation) optimizer. RMSProp 

(Ruder 2016) is an adaptive learning rate optimization algorithm that adjusts the learning rate based on the average of 
recent squared gradients. This helps the network learn more efficiently and converge faster.  
 Using this neural network architecture and the RMSProp optimizer provides several benefits. The use of 
ReLU and Sigmoid functions allows the model to capture complex, non-linear relationships between features and the 
star formation rate. Multiple layers help the model learn intricate interactions between features, enhancing its ability 
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to understand the data. Additionally, RMSProp helps prevent overfitting by adjusting learning rates dynamically based 
on observed gradients, leading to more stable and efficient learning. This approach enhances our ability to make 
accurate predictions of the star formation rate, providing deeper insights into the underlying astrophysical processes. 
 Mean Squared Error (MSE), R-squared (R²), and Standard Deviation (SD) are fundamental metrics in statis-
tical analysis. MSE is calculated by averaging the squared differences between observed and predicted values, serving 
as a measure of prediction accuracy. Lower MSE values indicate a model with better predictive performance. R², the 
coefficient of determination, represents the proportion of variance in the dependent variable that is predictable from 
the independent variables, with values closer to 1 indicating a better fit. Standard Deviation quantifies the dispersion 
of data points around the mean, providing insight into data variability.  
In the context of determining star formation rates (SFR), these metrics are crucial for model evaluation. MSE helps in 
assessing how well the model predicts SFR, with lower values indicating more accurate predictions. R² indicates how 
much of the variance in SFR is explained by the model, helping understand the model's explanatory power. Standard 
Deviation helps in assessing the natural variability in SFR data, distinguishing between model errors and inherent data 
spread.  
 Feature importance determines the impact of individual input features on a model's predictions, aiding in 
model interpretation and refinement. It is useful for understanding data relationships, identifying irrelevant features, 
and improving model performance. 
 In linear regression, feature importance is assessed through the absolute values of the model's coefficients. 
As mentioned earlier, the equation for linear regression is 𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3 + 𝛽𝛽4𝑥𝑥4 + ⋯+ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 + 𝜖𝜖 
where βi are the coefficients. Higher absolute values of βi indicate greater importance of the corresponding feature xi.  
 In Lasso regression, feature importance is determined by adding an L1 regularization term to  
the loss function, penalizing the absolute size of the coefficients. The loss function for Lasso regression is 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =

𝑅𝑅𝑅𝑅𝑅𝑅 + 𝜆𝜆 ∑
𝑗𝑗=1

𝑝𝑝
|𝛽𝛽𝑗𝑗| where RSS is the residual sum of squares and λ is the regularization parameter. This penalty causes 

some coefficients to shrink to zero, effectively performing feature selection by retaining features with non-zero coef-
ficients as important and setting others to zero.  
 

Results and Discussion 
 
Table 5. Error Values for each model 
 

Model: Mean Squared Error: R2: Standard Deviation: 

Linear Regression 0.00167 0.18221 0.04083 

Lasso Regression (alpha = 
0.1) 0.00169 0.17076 0.04111 

Neural Network 0.000939 0.4808 0.03003 

 
The feature importance of the Linear Regression model showed that the fractional contribution by the hot mid-infrared 
continuum to the dust luminosity of stellar birth clouds had the largest coefficient of 0.05. Other significant factors in 
the Linear Regression model included the star formation timescale, with a coefficient of 0.009, and the fractional 
contribution by warm dust in thermal equilibrium to the dust luminosity of stellar birth clouds, with a coefficient of 
0.0013.  
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 Because the Linear Regression model performed better with no regularization, we judged that applying Lasso 
Regression didn’t improve the model’s accuracy. However, the feature importance showed valuable results. Because 
Lasso Regression tends to decrease the importance of many factors, only two factors had a pronounced effect. The 
largest was dust mass, with a coefficient of about 7 × 10−12, and the second was the age of the oldest stars, with a 
coefficient of about 5 × 10−12. These coefficients compare to an average coefficient of about 7 × 10−13, showing 
that the aforementioned features are an order of magnitude more important than the average feature. This makes sense 
scientifically, as a galaxy with more dust will likely have more material to form stars, increasing the SFR, and a galaxy 
with more old stars might have more stars in general, decreasing the available gas and dust for forming new stars, and 
therefore decreasing the SFR.  
 After compiling our neural network, we observed a mean squared error of 0.000939, representing a decrease 
of 56% from the mean squared error of 0.00167 observed in the Linear Regression model. More importantly, the linear 
regression model has an R2 value of  0.18221, while the neural network has an R2 value of 0.4808. This shows that 
the linear regression model has an almost uncorrelated prediction, while the neural network model has a somewhat 
correlated prediction that is significantly closer to making an accurate prediction. Furthermore, the plots in Figure 1 
show that the correlation between different galactic features and star formation rate is nonlinear, suggesting that the 
neural network picks up on patterns that may not be discovered otherwise. The neural network’s stronger correlation 
shows that more complex models could predict star formation rates better, suggesting that increasing the data size or 
complexity of the model has potential for accurately predicting star formation rates.  
 While the neural network, with its superior R2 value, can predict star formation rate better than the linear 
regression model, our inability to represent feature importance in neural networks limits our understanding of which 
specific galactic properties are most influential in determining SFR. Despite these limitations, our results highlight the 
necessity of using sophisticated models to accurately predict SFR, showing the potential of neural networks to uncover 
intricate patterns that simpler models may miss. Moving forward, ensuring the accuracy of input data and exploring 
methods to interpret neural network results, such as explainable AI techniques, will provide deeper insights into the 
factors driving star formation. 
 Additionally, our model was trained on various galactic properties derived from the MagPhys model, which 
analyzes spectral energy distributions to infer these properties. While our neural network showed a significant reduc-
tion in mean squared error compared to the linear regression model, we must consider potential limitations. If the 
MagPhys model's analysis is inaccurate, the machine learning model could learn from incorrect values, leading to 
misleading conclusions about the relationship between galactic properties and SFR. Thus, the reliability of our pre-
dictions depends heavily on the accuracy of the underlying MagPhys model. 
 

Conclusion 
 
We used Linear Regression, Lasso Regression, and a Neural Network to determine the Star Formation Rate from 
galactic factors such as luminosity, metallicity, the ISM, star formation history, and the masses of gas, dust, and stars. 
We did this through the use of the Galaxy and Mass Assembly Dataset and the MagPhys model, which derives galactic 
features from the spectral energy distributions of galaxies and their redshifts. Our models achieved mean squared error 
accuracies of 0.00167, 0.00169,  0.000939, respectively. We also had a low standard deviation of 0.04083 for linear 
regression, which is an improvement over previous models. This high accuracy demonstrated that the star formation 
rate could be accurately predicted by knowing galactic features. It also demonstrated the importance of some features 
such as star formation timescale, fractional contribution of warm dust at thermal equilibrium to the dust luminosity, 
the dust luminosity, the dust mass, and the age of the oldest stars. 
 Exploring methods like those used by Surana et al. 2020. for determining SFR, stellar mass, and dust lumi-
nosity is also promising. Their machine-learning techniques could be used to find more galactic features accurately 
and quickly. This would help study the relationships between these features and SFR in greater detail, leading to more 
precise models and a better understanding of star formation processes. Their model’s increased speed will also allow 
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for faster characterization of more galaxies, allowing for a more representative dataset. Combining an expanded fea-
ture set with advanced methods could significantly improve the ability to predict and understand star formation in 
galaxies. 
 In future research, adding more galactic features could improve the accuracy of SFR predictions. Factors like 
magnetic fields (Hocuk et al. 2012), which affect the collapse of molecular clouds, and the galactic environment, 
including interactions with nearby galaxies, can impact SFR. Radiation pressure (Rosen et al. 2020) from young, 
massive stars can disperse gas, and cosmic ray flux (Neronov et al. 2017) can change the chemistry of the interstellar 
medium, both important for star formation. Other, less studied features could be investigated as well, such as the 
impact of dark matter, black hole activity (Harrison 2017), and galaxy mergers on star formation. Including these 
factors would help develop a more complete understanding of the mechanisms driving star formation. This approach 
could lead to new insights into the life cycle of galaxies and the evolution of the universe. 
 Due to computational limitations, our research also used only 30000 data points from nearly 200000. This 
could be a limited representation of galaxies as only 15% of the possible data was used. Using more data points, such 
as 100000 or the full ~200000 galaxies, would serve as a more accurate depiction of star formation rates. 
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