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ABSTRACT

Star formation rates (SFRs) are pivotal for understanding the growth of stars, galaxies, and the universe. Understand-
ing SFR is essential for insights into galaxy evolution, stellar populations, cosmology, and interstellar dynamics. SFR
analysis is well-suited to machine learning due to its complexity and volume of data. In our study, we utilized machine
learning models on a dataset containing various factors such as gas luminosity, star formation timescale, and metal-
licity to predict SFRs. Our models included Linear Regression, Lasso Regression, and a neural network. Both Linear
Regression and Lasso Regression yielded low mean squared error values, with the neural network achieving even
lower values, demonstrating the superior performance of deep learning in determining SFRs. Additionally, we as-
sessed feature importance for the Linear and Lasso Regression models, identifying which factors most significantly
influence SFR predictions. From our analysis, we concluded that the aforementioned factors are crucial for accurately
identifying SFRs in a galaxy, as our results showed that machine learning can predict SFRs with a mean squared error
of 0.000939 and R-squared of 0.4808 based on galactic properties. Furthermore, we used graphs to illustrate the rela-
tionships between SFRs and different galactic properties, providing visual evidence of these connections. Our findings
underscore the potential of machine learning in astrophysical research, particularly in predicting and understanding
the intricate processes that govern star formation in various galactic environments. This approach can significantly
enhance our comprehension of the universe's evolution.

Introduction

The formation of stars is a fundamental process that shapes the evolution of galaxies and the universe as a whole.
Understanding the star formation rate (SFR) is crucial for astrophysics, as it provides insights into the lifecycle of
galaxies, the interstellar medium (ISM), and the distribution of matter in the cosmos. Traditionally, determining the
SFR involves complex techniques and theoretical models, which can be time-consuming and require extensive human
expertise. However, recent advancements in artificial intelligence (AI) and machine learning (ML) offer a novel ap-
proach to tackling this challenge.

From Calzetti et al. 2007, we learn that there are many factors affecting star formation rate, including dust
mass, dust attenuation, luminosity, and different factors of the ISM. From Moustakas et al. 2005, we learn of other

factors influencing star formation rates, such as metallicity, ionization, and redshift. Finally, McKee et al. 2007 shows

how turbulence, magnetic fields, and dust and gas density also affect star formation rates. This study will investigate
some of these factors using machine learning.

Al, particularly deep learning, has shown remarkable success in various fields by leveraging large datasets
to uncover patterns and make predictions. In astrophysics, the application of Al is still in its initial stages but is rapidly
gaining traction. The potential of Al to process vast amounts of data, identify correlations, and predict outcomes with
high accuracy makes it a valuable tool for determining the SFRs. By analyzing data derived from the spectral energy
distributions (SEDs) of galaxies, Al can speed up the normally tedious process of estimating SFR.
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This research paper explores the development and implementation of an Al-based framework to estimate the
SFR from astronomical data. We employ a Linear Regression model, a Lasso Regression model, and a Neural Net-
work, trained on a dataset containing galaxy information and corresponding SFRs derived from established methods,
to predict the SFR directly from galactic information. Our approach aims to bridge the gap between traditional methods
and modern computational techniques, providing a scalable and efficient solution for astronomers.

V. Bonjean et al. 2019 trained a Random Forest model on SDSS-DR8, using redshifts, WISE Luminosities,
WISE colors in the near-IR, and spectra-extracted SFR and Stellar Mass. This model was trained on redshift (z) levels
of 0.01 <z < 0.3, and obtained a standard deviation of 0.38 dex for SFR and 0.16 dex for Stellar Mass. This method
accurately predicted star formation rates without the need for complex modeling and only required the previously
mentioned inputs. However, for galaxies with a redshift outside of this range, the model proved inaccurate.

Surana et al. 2020 trained a deep learning model on the GAMA Panchromatic Data Release to emulate the

MagPhys model. Multiband flux measurements and the redshift were used to predict galactic properties such as stellar
mass, dust luminosity, and star formation rates. This model produced standard deviation of 0.0577 for stellar mass
prediction, 0.1643 for star formation rate prediction, and 0.1143 for dust luminosity prediction. This model proved
much faster than the current MagPhys model, taking 0.03% of the time to predict factors for the same number of
galaxies.

Background

Our models will look to use the derived MagPhys results as a labeled dataset to predict star formation rates. Our
research will not use spectroscopic measurements, flux measurements, or redshift, and will instead use the derived
characteristics of galaxies to predict the star formation rate. This will indicate how accurate machine learning with the
MagPhys model is at discovering the importance of factors affecting star formation rates. It will also hold for a larger
region of redshift than 0.01 <z < 0.3, as the MagPhys DMU from GAMA is determined for galaxies in z > 0.001. By
expanding the redshift range, our study aims to better understand star formation over more of the universe's history.
We will examine various galactic features such as metallicity, gas, and dust mass, and the galaxy’s environment to
see how they influence star formation rates.

Dataset

For this project, we used the Galaxy and Mass Assembly (GAMA) Survey (Driver et al. 2022). This dataset is a
spectroscopic survey of ~300000 galaxies, building on previous spectroscopic surveys such as the Millenium Galaxy
Catalogue (J. Liske et al. 2003), the 2dFGRS (Colless M.M. 1999), and the Sloan Digital Sky Survey DR8 - (Eisenstein
etal. 2011). The survey has a number of Data Management Units (DMUSs), from which MagPhysv06 from GAMA 11
was selected. MagPhys (da Cunha et al. n.d.) is a model used to analyze spectral energy distributions (SEDs) to deter-

mine a number of characteristics, including but not limited to the age of the oldest stars in the galaxy, the star formation
timescale, and the metallicity of the galaxy. GAMA’s MagPhys DMU contains only the galaxies with redshift greater
than 0.001, and thus contains data for 197494 total galaxies.

Due to computational limitations and network issues, we were only able to download 30000 galaxies from
the MagPhys DMU, and therefore were only able to train our models on 30000 datapoints. Each galaxy had 18 pa-
rameters, shown in Table 1.

Table 1. Each galactic property derived from the MagPhys model and their definition.

Label: Definition:
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fmu(Opt) fraction of total dust luminosity contributed by dust in the ambient (diffuse)
mu
P ISM, optical
fmu(IR) fraction of total dust luminosity contributed by dust in the ambient (diffuse)
u
ISM, infrared
tform/yr age of the oldest stars in the galaxy
gamma star formation timescale (in Gyr)
Z/Z, metallicity Z
auV total V -band optical depth of the dust seen by young stars in their birth
au
clouds
mu fraction of tauV contributed by dust in the ambient (diffuse) ISM
M */Mgyn Stellar mass
SFR(1e8) Star formation rate, multiplied by 100 million
Lg/Leun Total stellar luminosity
ISM fractional contribution by cold dust to the dust luminosity of the ambient
Ec ISM
TgC/ K equilibrium temperature of warm dust in stellar birth clouds, in Kelvin
TICSM/ K equilibrium temperature of cold dust in the ambient ISM, in Kelvin
£he fractional contribution by Polycyclic Aromatic Hydrocarbon (PAHs) to the
PAH dust luminosity of stellar birth clouds
BC fractional contribution by the hot mid-infrared continuum to the dust
MIR luminosity of stellar birth clouds
BC fractional contribution by warm dust in thermal equilibrium to the dust
w luminosity of stellar birth clouds
M guse/ M, Total mass of dust

Many of these features are critical to understanding the star formation rate (SFR) of a galaxy. For instance,
large dust luminosity or dust mass values (Cucciati et al. 2012) could lead to an increased SFR, as a larger amount of

dust can provide the necessary conditions for more frequent star formation. Dust can shield newly forming stars from
harsh radiation, allowing them to accumulate mass and grow. Metallicity, which refers to the abundance of elements
heavier than hydrogen and helium, plays a crucial role (Yates et al. 2012) - higher metallicity can enhance cooling
processes in molecular clouds, promoting star formation. Furthermore, the star formation history of a galaxy offers
valuable context (Boquien et al. 2014), as galaxies with a history of active star formation are likely to continue forming
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stars at a significant rate. The age of the oldest stars in a galaxy also provides insights (Graus et al. 2019), as older

stellar populations can influence the current interstellar medium's dynamics and composition. Values such as the equi-
librium temperature of the ISM and the contribution of Polycyclic Aromatic Hydrocarbons (PAHs) could influence
the star formation rate (Peeters et al. 2004), as cooler dust will collapse to form stars easier than hotter dust. By

examining these features, we gain a comprehensive understanding of the factors driving SFR, allowing us to predict
future star formation activity more accurately. This holistic approach highlights the interplay between various galactic
properties and underscores the complexity of modeling SFR.

Plot of Star Formation Rate vs Age of the Oldest Stars Plot of Star Formation Rate vs Star Formation Timescale
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Figure 1. Plots of star formation rate against the age of the oldest stars, star formation timescale, contribution of warm
dust to dust luminosity, and dust mass

Methods

For our data, we took the MagPhys output by assigning our X-values to all columns excluding the star formation rate,
and our y-values to the star formation rate. We then split our data halfway, 50% being training and 50% being testing,
and assigned a random state of 42.

In our research, we leverage linear regression to analyze the relationship between a continuous dependent
variable (y) and one or more independent variables (x). This statistical method is expressed through the equation y =
Bo + L1x1 + Boxy + B3xz + Paxy + -+ + Buxy + €, where the variables represent the following values as shown in
Table 2.
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Table 2. Variable Names for Linear Regression

Variable: Definition:

y predicted value of our dependent variable (star formation rate)

Bo Intercept

Bn Coefficient of the independent variable (indicates the change in y per unit
change in x) for each independent variable

€ Error term (represents the difference between actual and predicted values)

We employ linear regression to uncover the strength and direction of the linear association between the var-
iables. By minimizing €, we establish the best-fitting straight line that explains the relationship between x and y. This
technique allows us to predict y, in our case the star formation rate, for new data points within the modeled range of
X, which are our other galactic features.

In addition to standard linear regression, we also utilize Lasso (Least Absolute Shrinkage and Selection Op-
erator) regression (Tibshirani 1996), a variation of linear regression that enhances model performance by incorporating
regularization. Lasso regression modifies the linear regression equation by adding a penalty term to the loss function,
which is the sum of the absolute values of the coefficients, modeled by the equation y = By + B1x1 + Box, + fz3x3 +

4
Baxy + -+ Brxy + A Y |B)| + €, where the additional variables represent the following values as shown in Table 3.
j=1

Table 3. Additional Variables in Lasso Regression

Variable: Definition:
A Regularization parameter that controls the strength of the penalty
P
A X161 Sum of the absolute values of the coefficients
j=1

The penalty term in Lasso regression has several key benefits: it can reduce some coefficients to zero, effec-
tively selecting the most significant features and improving model interpretability by focusing on fewer, more relevant
variables. Additionally, by penalizing large coefficients, Lasso regression helps prevent overfitting, especially in high-
dimensional data. This approach allows us to better manage data complexity, identify crucial galactic features, and
enhance the accuracy and robustness of our star formation rate predictions.

In our research, we use a neural network to study the relationship between the star formation rate (our de-
pendent variable, y) and various galactic features (our independent variables, x). Neural networks are ideal for this
task because they can capture complex, non-linear relationships that simpler methods might miss. This allows us to
make more accurate predictions and gain better insights into what influences star formation.

ISSN: 2167-1907 www.JSR.org/hs 5


https://www.jstor.org/stable/2346178

HIGH SCHOOL EDITION

@ Journal of Student Research

Volume 13 Issue 4 (2024)

A neural network consists of layers of interconnected neurons. Each neuron applies a linear transformation
followed by a non-linear activation function to its input. This allows the network to learn patterns in the data. The
network is trained by adjusting the weights and biases of the neurons to minimize a loss function, which measures the
difference between predicted and actual values. We also use two activation functions in our neural network, which are
ReLU (Agarap 2018) and Sigmoid (Sharma et al. 2020).

ReLU (Rectified Linear Unit) introduces non-linearity by outputting zero for negative inputs and the input
itself for positive inputs. The function is defined as ReLU(x) = max(0, x), where if x > 0, f(x) = x, and otherwise,
f(x) = 0. This property helps the network learn complex patterns and mitigates the vanishing gradient problem, which
is common in deep networks. Most of our layers use ReLU to add the necessary non-linearity and improve learning
efficiency. Sigmoid normalizes the output to a range between 0 and 1, making it useful for certain layers where output
values need to be bounded. For very large positive x values, the function goes to 1, and for very large negative x

values, the function goes to 0. For x = 0, the function is at 0.5. The function is defined as o (x) =

Tro By normal-
izing the outputs, Sigmoid helps control the data's range as it passes through the network, particularly in layers where
we want the output to represent probabilities or scaled values.

Our neural network has the following structure, where W; and b; are the weights and biases for each layer:

Table 4. Hidden Layers for Neural Network

Layer: Neurons: Activation: Transformation:

Input 16 N/A N/A
1 186 ReLU h; = ReLU(W, * x + by)
2 186 ReLU h, = ReLU(W, * h; + by)
3 93 ReLU h; = ReLU(W3* h; + b;)
4 93 Sigmoid hy = Sigmoid(W, * h; + bs)
5 93 ReLU hs = ReLU(W5 * hy + bs)
6 62 ReLU hs = ReLU(W * hs + bg)
7 62 Sigmoid h; = Sigmoid(W; * he + b7)
8 62 ReLU hg = ReLU(W5 * h; + bg)

Output 1 N/A y =W,y * hg + by

To train our neural network, we used the RMSProp (Root Mean Square Propagation) optimizer. RMSProp
(Ruder 2016) is an adaptive learning rate optimization algorithm that adjusts the learning rate based on the average of
recent squared gradients. This helps the network learn more efficiently and converge faster.

Using this neural network architecture and the RMSProp optimizer provides several benefits. The use of
ReLU and Sigmoid functions allows the model to capture complex, non-linear relationships between features and the
star formation rate. Multiple layers help the model learn intricate interactions between features, enhancing its ability
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to understand the data. Additionally, RMSProp helps prevent overfitting by adjusting learning rates dynamically based
on observed gradients, leading to more stable and efficient learning. This approach enhances our ability to make
accurate predictions of the star formation rate, providing deeper insights into the underlying astrophysical processes.

Mean Squared Error (MSE), R-squared (R2), and Standard Deviation (SD) are fundamental metrics in statis-

tical analysis. MSE is calculated by averaging the squared differences between observed and predicted values, serving
as a measure of prediction accuracy. Lower MSE values indicate a model with better predictive performance. R?, the
coefficient of determination, represents the proportion of variance in the dependent variable that is predictable from
the independent variables, with values closer to 1 indicating a better fit. Standard Deviation quantifies the dispersion
of data points around the mean, providing insight into data variability.
In the context of determining star formation rates (SFR), these metrics are crucial for model evaluation. MSE helps in
assessing how well the model predicts SFR, with lower values indicating more accurate predictions. R? indicates how
much of the variance in SFR is explained by the model, helping understand the model's explanatory power. Standard
Deviation helps in assessing the natural variability in SFR data, distinguishing between model errors and inherent data
spread.

Feature importance determines the impact of individual input features on a model's predictions, aiding in
model interpretation and refinement. It is useful for understanding data relationships, identifying irrelevant features,
and improving model performance.

In linear regression, feature importance is assessed through the absolute values of the model's coefficients.
As mentioned earlier, the equation for linear regression is y = o + B1xq + Boxy + Sax3 + Baxg + -+ frx, + €
where f; are the coefficients. Higher absolute values of §; indicate greater importance of the corresponding feature x;.

In Lasso regression, feature importance is determined by adding an L1 regularization term to
the loss function, penalizing the absolute size of the coefficients. The loss function for Lasso regression is Loss =

P
RSS+ 1Y, |,B]| where RSS is the residual sum of squares and ) is the regularization parameter. This penalty causes
j=1

some coefficients to shrink to zero, effectively performing feature selection by retaining features with non-zero coef-
ficients as important and setting others to zero.

Results and Discussion

Table 5. Error Values for each model

Model: Mean Squared Error: R Standard Deviation:
Linear Regression 0.00167 0.18221 0.04083
gis)so Regression (alpha = ;3169 0.17076 0.04111
Neural Network 0.000939 0.4808 0.03003

The feature importance of the Linear Regression model showed that the fractional contribution by the hot mid-infrared
continuum to the dust luminosity of stellar birth clouds had the largest coefficient of 0.05. Other significant factors in
the Linear Regression model included the star formation timescale, with a coefficient of 0.009, and the fractional
contribution by warm dust in thermal equilibrium to the dust luminosity of stellar birth clouds, with a coefficient of
0.0013.
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Because the Linear Regression model performed better with no regularization, we judged that applying Lasso
Regression didn’t improve the model’s accuracy. However, the feature importance showed valuable results. Because
Lasso Regression tends to decrease the importance of many factors, only two factors had a pronounced effect. The
largest was dust mass, with a coefficient of about 7 X 10712, and the second was the age of the oldest stars, with a
coefficient of about 5 X 10712, These coefficients compare to an average coefficient of about 7 X 10713, showing
that the aforementioned features are an order of magnitude more important than the average feature. This makes sense
scientifically, as a galaxy with more dust will likely have more material to form stars, increasing the SFR, and a galaxy
with more old stars might have more stars in general, decreasing the available gas and dust for forming new stars, and
therefore decreasing the SFR.

After compiling our neural network, we observed a mean squared error of 0.000939, representing a decrease
of 56% from the mean squared error of 0.00167 observed in the Linear Regression model. More importantly, the linear
regression model has an R? value of 0.18221, while the neural network has an R? value of 0.4808. This shows that
the linear regression model has an almost uncorrelated prediction, while the neural network model has a somewhat
correlated prediction that is significantly closer to making an accurate prediction. Furthermore, the plots in Figure 1
show that the correlation between different galactic features and star formation rate is nonlinear, suggesting that the
neural network picks up on patterns that may not be discovered otherwise. The neural network’s stronger correlation
shows that more complex models could predict star formation rates better, suggesting that increasing the data size or
complexity of the model has potential for accurately predicting star formation rates.

While the neural network, with its superior R? value, can predict star formation rate better than the linear
regression model, our inability to represent feature importance in neural networks limits our understanding of which
specific galactic properties are most influential in determining SFR. Despite these limitations, our results highlight the
necessity of using sophisticated models to accurately predict SFR, showing the potential of neural networks to uncover
intricate patterns that simpler models may miss. Moving forward, ensuring the accuracy of input data and exploring
methods to interpret neural network results, such as explainable Al techniques, will provide deeper insights into the
factors driving star formation.

Additionally, our model was trained on various galactic properties derived from the MagPhys model, which
analyzes spectral energy distributions to infer these properties. While our neural network showed a significant reduc-
tion in mean squared error compared to the linear regression model, we must consider potential limitations. If the
MagPhys model's analysis is inaccurate, the machine learning model could learn from incorrect values, leading to
misleading conclusions about the relationship between galactic properties and SFR. Thus, the reliability of our pre-
dictions depends heavily on the accuracy of the underlying MagPhys model.

Conclusion

We used Linear Regression, Lasso Regression, and a Neural Network to determine the Star Formation Rate from
galactic factors such as luminosity, metallicity, the ISM, star formation history, and the masses of gas, dust, and stars.
We did this through the use of the Galaxy and Mass Assembly Dataset and the MagPhys model, which derives galactic
features from the spectral energy distributions of galaxies and their redshifts. Our models achieved mean squared error
accuracies of 0.00167, 0.00169, 0.000939, respectively. We also had a low standard deviation of 0.04083 for linear
regression, which is an improvement over previous models. This high accuracy demonstrated that the star formation
rate could be accurately predicted by knowing galactic features. It also demonstrated the importance of some features
such as star formation timescale, fractional contribution of warm dust at thermal equilibrium to the dust luminosity,
the dust luminosity, the dust mass, and the age of the oldest stars.

Exploring methods like those used by Surana et al. 2020. for determining SFR, stellar mass, and dust lumi-

nosity is also promising. Their machine-learning techniques could be used to find more galactic features accurately
and quickly. This would help study the relationships between these features and SFR in greater detail, leading to more
precise models and a better understanding of star formation processes. Their model’s increased speed will also allow
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for faster characterization of more galaxies, allowing for a more representative dataset. Combining an expanded fea-
ture set with advanced methods could significantly improve the ability to predict and understand star formation in
galaxies.

In future research, adding more galactic features could improve the accuracy of SFR predictions. Factors like
magnetic fields (Hocuk et al. 2012), which affect the collapse of molecular clouds, and the galactic environment,

including interactions with nearby galaxies, can impact SFR. Radiation pressure (Rosen et al. 2020) from young,
massive stars can disperse gas, and cosmic ray flux (Neronov et al. 2017) can change the chemistry of the interstellar
medium, both important for star formation. Other, less studied features could be investigated as well, such as the

impact of dark matter, black hole activity (Harrison 2017), and galaxy mergers on star formation. Including these
factors would help develop a more complete understanding of the mechanisms driving star formation. This approach
could lead to new insights into the life cycle of galaxies and the evolution of the universe.

Due to computational limitations, our research also used only 30000 data points from nearly 200000. This
could be a limited representation of galaxies as only 15% of the possible data was used. Using more data points, such
as 100000 or the full ~200000 galaxies, would serve as a more accurate depiction of star formation rates.
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