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ABSTRACT 

Water body segmentation is a critical task in remote sensing and environmental monitoring, with applications ranging 
from flood management to natural resource assessment. This task is complex due to many factors such as water color, 
vegetation, and land type variations. One major and often neglected challenge is the impact of night lighting condi-
tions. In this paper, we present a novel dataset specifically designed to enhance performance under diverse conditions 
especially with nighttime scenarios. Utilizing nighttime imagery offers advantages such as reduced solar reflection, 
minimized glare, and clearer detection of water boundaries, which can be particularly useful during periods of haze, 
cloud cover, or when daytime observations are limited. Our methodology includes the collection, annotation, augmen-
tation, and performing selective slicing on this dataset, followed by the training and evaluation of advanced segmen-
tation models. The results demonstrate significant improvements in model performance, including accuracy, IoU, and 
precision, across various scenarios, particularly in handling previously challenging conditions. This work helps ad-
vance the state of water body segmentation and provides a valuable resource for future research in environmental 
monitoring and remote sensing. 

Introduction 

Water body segmentation is a fundamental task in remote sensing and environmental monitoring, playing a crucial 
role in applications such as flood management, natural resource assessment, and ecological studies [1-3]. Accurate 
segmentation of water bodies from satellite and aerial imagery enables better analysis of water distribution, quality, 
and changes over time. However, achieving reliable segmentation in diverse and challenging conditions remains an 
obstacle [4]. Fig 1 illustrates these challenges, showing examples of segmentation difficulties caused by varying water 
colors, vegetation along the water’s edge, different land types, and night lighting conditions. Each of these factors 
introduces unique complexities that can hinder accurate detection and delineation of water bodies. Addressing these 
challenges requires sophisticated methods and specialized datasets. 
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Figure 1. Examples Illustrating the Challenges in Water Body Segmentation Across Diverse Conditions 
 

The most commonly used dataset for water body segmentation is derived from Sentinel-2 satellite imagery 
[5-6], which has black and white mask generated by the Normalized Water Difference Index (NWDI) to differentiate 
water bodies from other features. While NWDI is effective for detecting vegetation, its adaptation for water detection 
often relies on a higher threshold, which can result in inaccurate or incomplete segmentation, especially for more 
complex water bodies [1]. The masks may not adequately represent the variability in water color, land types, and 
vegetation, nor do they sufficiently cover nighttime conditions where reduced illumination and increased noise affect 
image quality. These limitations in existing datasets contribute to the difficulties faced by current segmentation meth-
ods, as they are not trained on data that fully captures the range of conditions encountered in real-world applications. 
As a result, models trained on such datasets may struggle to generalize effectively, leading to reduced performance in 
practical scenarios. 

The challenge at hand is to develop a diverse dataset that can overcome these limitations and improve per-
formance across diverse conditions. To address this, we created a novel dataset that includes a wider range of envi-
ronmental conditions, such as varying water colors, different land types, and vegetation patterns, as well as nighttime 
imagery. By incorporating these diverse scenarios, our dataset aims to provide a better foundation for training and 
evaluating segmentation models. This approach seeks to enhance model robustness, allowing for more accurate and 
reliable detection of water bodies in real-world applications, where traditional datasets often fall short. 
 

Methodology 
 
Dataset Creation 
 
In this work, we aimed to create a novel dataset that overcomes the limitations of existing datasets by including diverse 
environmental conditions such as different water colors, land types, vegetation, and nighttime lighting. To achieve 
this, we sourced high-resolution satellite images from Google Earth Pro, which provides imagery captured by the 
Landsat and Copernicus satellites [7]. This dataset offers greater variability in land cover and lighting conditions 
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compared to datasets relying solely on pre-existing segmentation masks. The primary goal was to collect images that 
represent challenging segmentation scenarios, enabling robust model training. 
 
Data Collection 
 
Google Earth Pro was used as the primary platform for obtaining satellite imagery, using Landsat and Copernicus’s 
multispectral imaging capabilities [8]. We specifically focused on regions with significant environmental diversity to 
capture a broad range of water body characteristics. These images included a variety of landscapes such as coastal 
areas, desert regions with intermittent water bodies, dense vegetation zones, and urban areas with infrastructure. Ad-
ditionally, we collected imagery under different lighting conditions, including nighttime scenarios, to address the of-
ten-neglected challenge of night lighting. 
 
Data Annotation 
 
The next step involved generating high-precision segmentation masks for each of the satellite images. To ensure the 
accuracy and quality of these annotations, we used the Computer Vision Annotation Tool (CVAT) to manually gen-
erate masks [9], which is illustrated in Fig 2. CVAT allowed for detailed, pixel-level annotations, ensuring that the 
boundaries of water bodies were accurately captured, even in cases where water color, land types, or vegetation made 
segmentation more difficult. Each image was carefully annotated by identifying and labeling the water bodies, which 
were marked in a binary mask format (water as white and non-water areas as black). Manual annotations were neces-
sary to overcome the limitations of automated mask generation methods like NWDI, which often struggle with edge 
cases such as complex land formations, shadows, or vegetation overlapping with water bodies. 
 

 
 
Figure 2. Creating Masks for Images using CVAT 
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Data Augmentation 
 
To further enhance the dataset, data augmentation techniques were applied [10]. These included transformations such 
as rotations, scaling, and brightness adjustments as shown in Fig 3. The purpose of these augmentations was to artifi-
cially increase the diversity of the dataset, allowing the model to generalize better under various lighting conditions 
and land formations. For nighttime imagery, we also simulated different noise levels and illumination variations to 
make the dataset even more comprehensive. 
 

 
 
Figure 3. Transforming Images Using Rotations, Flipping, Scaling and Lighting Adjustments  
 
Selective Slicing 
 
Selective slicing is a crucial component of our methodology to enhance the performance of deep learning models for 
water body segmentation. We divided each high-resolution satellite image into non-overlapping slices of 256x256 
pixels, creating a balance between preserving contextual information and adhering to input size constraints. This tech-
nique ensures that essential features along water body edges are retained, allowing the model to learn from localized 
patterns effectively. 

For labeling the slices, we utilized the corresponding segmentation masks and applied a water pixel threshold 
of 10% to classify each slice as containing water or not. Fig 4 illustrates the process of selective slicing applied to 
high-resolution satellite imagery. Each 256x256 pixel slice is outlined on the original image and the slices are also 
color-coded to indicate their classification based on the water pixel threshold. This approach not only increases dataset 
diversity but also enhances the model's ability to generalize across various environmental conditions. Ultimately, our 
selective slicing strategy boosts both the volume and quality of training data, improving the accuracy and reliability 
of models in real-world applications. 
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Figure 4. Visualization of the Selective Slicing  
 
Segmentation Models 
 
For the segmentation task, we employed advanced deep learning models, leveraging architectures such as FCN, U-
Net, Link-Net and DeepLabV3+ [11-15]. These models were selected for their ability to capture fine-grained spatial 
details and perform well on pixel-level classification tasks. Modifications were made to these architectures to enhance 
their performance in detecting water bodies under challenging conditions such as low lighting or areas with overlap-
ping vegetation. The models were trained on the newly created dataset, using a combination of convolutional layers 
and attention mechanisms to focus on the complex boundaries of water bodies. 
 

Results and Analysis 
 
Dataset 
 
First: Sentinel-2 Dataset 
The first dataset was sourced from Kaggle, titled "Images and Masks of Satellite Images of Water Bodies for Image 
Segmentation." It consists of 2,841 daytime images captured by the Sentinel-2 satellite. The water body masks were 
automatically generated by calculating the Normalized Water Difference Index (NWDI), which detects water by com-
paring near-infrared and visible green reflectance. While this approach works in standard conditions, it has limitations 
as it can create noise when handling complex environments, such as varying water colors, land types, and overlapping 
vegetation. 
 A significant challenge with this dataset is the presence of noise in some images [16]. Specifically, there are 
random images where the content is either completely black or where the water mask is entirely filled. These anoma-
lies can adversely affect the performance of the model by introducing incorrect training examples, which may lead to 
overfitting or reduced generalization capability. 
 
Second: Custom Google Earth Pro Dataset 
To overcome the limitations of the first dataset, we created a custom dataset using high-resolution satellite imagery 
from Google Earth Pro, utilizing images captured by the Landsat and Copernicus satellite programs. This dataset 
consists of 110 high-resolution images consisting of both daytime and nighttime imagery providing a wider range of 
environmental conditions. For this custom dataset, we manually annotated the water body masks using the Computer 
Vision Annotation Tool (CVAT).  This tool allowed us to create precise, pixel-level annotations, ensuring the accurate 
delineation of water bodies in challenging scenarios. We then applied selective slicing, rotations, scaling, and hori-
zontal and vertical flipping resulting in 3,306 images. 
 
Evaluation Metrics 
 
To quantitatively assess and compare the performance of our segmentation models, we employed four key evaluation 
metrics: Accuracy, Precision, Recall, and Intersection over Union (IoU). These metrics are fundamental for under-
standing different aspects of model performance: 

Equation 1: Equations of Evaluation Metrics  
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 

 
Here, TP, TN, FP, and FN represent True Positives, True Negatives, False Positives, and False Negatives, 

respectively. Accuracy measures the overall correctness of the model, while Precision indicates how often positive 
predictions are correct. Recall evaluates the model's ability to detect all actual positives. Intersection over Union (IoU) 
assesses the spatial overlap between predicted and actual segmentations. IoU was chosen as the primary metric for its 
ability to accurately evaluate the alignment between predicted and ground truth segmentations. 
 
Results 
 
We compare the performance of various segmentation models using both the existing Sentinel-2 dataset and our newly 
created dataset. This comparative analysis highlights how the models perform under different conditions, including 
the challenges posed by night lighting, diverse water colors, vegetation, and land types. By evaluating the models 
across these datasets, we aim to demonstrate the improvements and advantages provided by our new dataset in ad-
dressing previously difficult segmentation scenarios. 
 
Performance on Sentinel-2 Dataset 
Table 1 presents the results of various models trained on the “Satellite Images of Water Bodies” dataset sourced from 
Kaggle. The table includes key performance metrics: accuracy, precision, recall, and Intersection over Union (IoU). 
Each metric was evaluated on the test dataset, which comprises 10% of the whole dataset, highlighting the effective-
ness of each model in segmenting water bodies from satellite images. Among the models, Link-Net achieved the 
highest accuracy (0.7633) while DeepLabV3+ excelled in precision (0.9642), recall (0.6551) and IoU (0.7365). These 
results demonstrate the varied strengths of each approach in tackling the segmentation challenge. 
 
Table 1. Performance Comparison of Segmentation Models with Sentinel-2 Dataset 
 

Models 

Metrics 

Accuracy Precision Recall IoU 

FCN 0.7263 0.9255 0.5803 0.5275 

U-Net 0.7050 0.8797 0.5657 0.5297 
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Link-Net 0.7633 0.9183 0.6365 0.6663 

DeepLabsV3+ 0.7605 0.9642 0.6551 0.7365 

 
Fig 5 illustrates the performance of various models, trained with Sentinel-2 dataset, when predicting 

nighttime images of the same water body. It is evident that the FCN and U-Net models perform poorly, struggling to 
accurately capture the features in the nighttime context. In contrast, Link-Net shows improved performance compared 
to FCN and U-Net, while DeepLabV3+ stands out as the most effective model, demonstrating superior accuracy in 
predicting nighttime conditions.  
 

 
 
Figure 5. Performance Comparison of Segmentation Models with Sentinel-2 Dataset. (a) Images, (b) Ground-truth, 
(c) FCN, (d) U-Net, (e) Link-Net (f) DeepLabsV3+ 
 
Performance on Our Dataset 
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Table 2 displays the results of models trained on our custom dataset, which utilizes Landsat and Copernicus satellite 
imagery sourced from Google Earth Pro. The table summarizes key performance metrics: batch size, accuracy, preci-
sion, recall, and Intersection over Union (IoU). All models were evaluated with a batch size of 16. Notably, 
DeepLabV3+ achieved the highest accuracy (0.9916) and IoU (0.9733), while Link-Net closely followed with im-
pressive precision (0.9874) and recall (0.9871). These results underscore the strong performance of each model in the 
context of water body segmentation, showcasing their effectiveness in leveraging high-resolution satellite imagery. 
 
Table 2. Performance Comparison of Segmentation Models with Our Dataset 
 

Models 
Metrics 

Accuracy Precision Recall IoU 
FCN 0.9746 0.9700 0.9618 0.9078 
U-Net 0.9830 0.9712 0.9835 0.9419 
Link-Net 0.9905 0.9874 0.9871 0.9682 
DeepLabsV3+ 0.9916 0.9875 0.9901 0.9733 

 
Fig 6 illustrates the performance of various models, trained with our custom dataset after implementing the 

selective slicing technique. The consistent and precise results across the board highlight the effectiveness of this da-
taset and approach of training. By using this technique, all models achieve significant improvements, further empha-
sizing the importance of data processing strategies in enhancing model performance. 
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Figure 6. Performance Comparison of Segmentation Models with Our Dataset. (a) Images, (b) Ground-truth, (c) FCN, 
(d) U-Net, (e) Link-Net (f) DeepLabsV3+ 
 

Discussion 
 
This study highlights the superior performance of segmentation models when trained on our newly developed dataset, 
which contains nighttime imagery and diverse environmental conditions. Compared to the traditional Sentinel-2 da-
taset, our dataset led to significantly higher accuracy, precision, recall, and IoU scores, as seen in table 1 and table 2. 
Models like FCN and U-Net, while already struggling with daytime images in the traditional dataset, showed a par-
ticularly steep decline in performance with nighttime images, as demonstrated in Fig 5. In contrast, DeepLabV3+ 
consistently excelled across both datasets, with the inclusion of nighttime imagery making a clear difference in its 
robustness. Link-Net, while performing moderately well, still trailed behind DeepLabV3+ in complex scenarios. The 
Sentinel-2 dataset’s lack of variation in lighting conditions was evident in its lower performance metrics. 
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The application of the selective slicing and merging technique, detailed in Fig 6, significantly enhanced all 
models' precision and IoU, proving especially valuable for nighttime segmentation. The ability to break down large 
images into smaller slices allowed the models to focus on specific details, improving overall segmentation accuracy. 
Despite this, there is room for improvement: expanding the dataset to include more balanced day and night images, as 
well as optimizing models like Link-Net, could further increase robustness in real-world, unpredictable environments. 
 

Conclusion 
 
This study presents significant advancements in water body segmentation by introducing a novel dataset that enhances 
model performance across a range of challenging scenarios. By comparing models trained on both the existing Senti-
nel-2 dataset and our new dataset, we have demonstrated the advantages of incorporating diverse and comprehensive 
data. The improved segmentation accuracy observed with our dataset underscores its potential for better handling real-
world complexities, such as night lighting and varying environmental conditions. 

In summary, our work highlights the importance of dataset quality and diversity in enhancing segmentation 
models. Future research should focus on further refining data collection and augmentation techniques to address ad-
ditional challenges and continue advancing the state of water body segmentation. This research not only improves 
current methodologies but also provides a foundation for developing more robust and accurate models for environ-
mental monitoring. 
 

Limitations 
 
The limitations of this study are primarily related to the manual annotation process for the 3,306 images was time-
intensive, which may restrict scalability and hinder the model's ability to generalize to larger or more diverse datasets. 
Expanding the dataset to include other satellite programs and a wider range of environmental conditions could enhance 
the model’s robustness. Future research should focus on optimizing the balance between day and night images, ad-
dressing extreme environmental conditions, and exploring semi-automated annotation methods to facilitate the crea-
tion of larger, high-quality datasets, thereby increasing the model's applicability across different sensors and condi-
tions. 
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