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ABSTRACT 

Digital pathology analysis is an advancement in medical diagnostics that leverages digital imaging to enhance the 
examination and interpretation of pathology slides. By converting traditional glass slides into high-resolution digital 
images, digital pathology enables pathologists to review and analyze samples with greater precision and efficiency. 
Machine learning-based techniques in digital pathology are attracting significant attention from pathologists and bi-
ologists due to their ability to reduce analysis time and provide objective, accurate results. In particular, semantic 
segmentation approaches have been widely adopted to isolate specific proteins or cell areas within digital pathology 
images. However, these methods often exhibit biases toward particular datasets which leads to models that can only 
process specific targets and lack general applicability. To address this limitation, we propose a target-specific seg-
mentation approach using conditional segmentation networks. We introduce a one-hot vector to control the isolation 
of target proteins in a conditional manner. The proposed method achieved a pixel accuracy of 83.6% and an intersec-
tion over union of 0.7954 on a public pathology segmentation dataset. 

Introduction 

Biopsy is the process of extracting cells from a specific tissue, organ, or fluid of a human body, and examining them 
in the laboratory. Its main purpose is to detect cancer or observe cancer cell death in cancer-treating patients. WSI, 
short for Whole Slide Imaging, is a part of the biopsy that digitalizes physical pathology slides in order for pathologists 
to examine pathology images with higher resolution that can also be integrated with additional tools for clearer anal-
ysis. 

Traditionally, pathologists had to manually examine the digital pathology images, which is time-consuming 
and delays diagnosis. Subjectivity also matters, since pathologists are humans and they have different views, human 
error and subjectivity are inevitable, which leads to inaccurate diagnosis. With fatigue due to labor-intensive work, 
accuracy drops further. 
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Figure 1. Example of a pathology image 
 

To address this issue, image segmentation-based systems that assist pathologists have been developed.  Image 
segmentation is a pixel-wise classification method that distinguishes and outlines objects within an image. By framing 
and highlighting images into distinct parts, it improves the analysis quality since it provides well-differentiated bound-
aries. As shown in Figure 2, image segmentation isolates the target protein areas from input pathology images. This 
advanced technology aids pathologists and biologists by reducing analysis time and increasing efficiency. This pro-
vides fast identification of target areas with less manual effort. However, this approach often exhibit biases toward 
specific datasets which results in models that are limited to processing particular targets and lack general applicability.  

To overcome this limitation, we propose a target-specific segmentation approach using conditional segmen-
tation networks. By introducing a one-hot vector to control the isolation of target proteins conditionally, the proposed 
method enhances flexibility and generalization. The remainder of this paper is organized as follows: Chapter 2 offers 
an overview of Whole Slide Imaging and Object Segmentation to provide essential context for the proposed approach. 
Chapter 3 details the specific steps of the proposed method, while Chapter 4 demonstrates its efficiency through var-
ious experimental results. Finally, Chapter 5 summarizes the findings and conclusions of the paper. 
 

 
 
Figure 2. Two images with before (left) and after (right) image segmentation. 
 

Related Work 
 
Whole Slide Image  
 
Whole slide imaging is a digital technique of converting physical slides into high-resolution digital images, which is 
widely used in pathology to identify malignant and cancerous cells for diagnosis and testing. The progress begins with 
the extraction of a microscopic tissue sample, which is then prepared for digital imaging. To safeguard the slide con-
tamination, spoilage, or damage, a fixation process is employed. This process involves treating the tissue sample with 
a chemical solution, such as formalin, to preserve its cellular structure and prevent degradation. Fixation stabilizes 
proteins and other cellular components, ensuring that the tissue remains intact and accurate for subsequent staining 
and digital imaging. This step is important for maintaining the integrity of the sample and ensuring reliable diagnostic 
results.  
 After preservation and staining, the tissue slide is scanned to generate a high-resolution digital image that 
captures fine details. These digital images are typically stored in specialized file formats, such as SVS or NDPI, which 
are designed to preserve the image's integrity and resolution. Once digitized, pathologists review these images manu-
ally to identify abnormalities. Despite the advancements offered by WSI, it has significant drawbacks. The process 
remains highly labor-intensive, requiring extensive time and effort from even experienced pathologists. This labor-
intensive nature, coupled with the complexity of the images, can lead to a diagnostic error rate of approximately 50%, 
highlighting the need for more efficient and accurate methods in digital pathology (Raab et al. 2005). 
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Object Segmentation  
 
Semantic segmentation is a computer vision technique where the goal is to classify each pixel in an image into a 
specific category. Unlike object detection, which identifies and classifies objects in bounding boxes, semantic seg-
mentation provides a pixel-level understanding of an image. Semantic segmentation is widely applied in pathology 
image analysis to facilitate the detailed examination of tissue samples. This enables pathologists to identify, classify, 
and quantify various structures and abnormalities within these images (Rashidi et al. 2019). Pathology images, typi-
cally obtained through microscopy of stained tissue sections, contain intricate details that require precise analysis at a 
cellular or sub-cellular level. Semantic segmentation aids in automating and enhancing this process.  

Semantic segmentation is often implemented using the U-Net (Ronneberger et al. 2015) architecture, a type 
of convolutional neural network designed for tasks that require precise pixel-level predictions, like medical image 
segmentation. In this study, we utilized the U-Net architecture to develop a target-specific segmentation system. A 
detailed explanation of the proposed system is provided in Chapter 3. 
 

Conditional Segmentation Network 
 

 
 
Figure 3. Architecture of the proposed conditional segmentation network 
 
Figure 3 illustrates the architecture of the proposed conditional segmentation network. The proposed network is com-
posed of three modules: an encoder, a decoder, and a one-hot vector input module. The encoder takes a high-resolution 
digital image of a pathology image patch stained with H&E as an input and generates a feature map using the convo-
lutional neural network. As the feature maps in the encoder decrease in size, down sampling also progresses while 
creating the feature map. This feature map mathematically represents the important features of the imputed pathology 
images such as geometric patterns, shapes of cells, or colors. The one-hot vector controls which target protein to 
isolate in a binary manner. This vector is T-dimensional, where T represents the number of target proteins or cells. 
For example, if the user wants to isolate the first category, the first value in the one-hot vector is set to 1, while all 
other values are set to 0. 

The generated feature map is concatenated with the one-hot vector and then fed into the decoder to produce 
the segmentation map. The decoder is an inverted version of the encoder, with the downsampling layers replaced by 
upsampling layers. This process is summarized in Equations 1 and 2. 

Equation 1: Encoder 
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The variable I denotes the input image that the encoder will process, while Wenc represents the learnable 
parameters of the encoder. 

Equation 2: Decoder 
 

 
 

Here, f and c denote the feature maps and one-hot vectors, respectively. The variable Wdec represents the 
learnable parameters of the decoder. To train the proposed network, we utilized pixel-wise cross-entropy loss function 
as explained in Equation 3. 

Equation 3: Pixel-wise cross-entropy loss function  
 

 
 

Here, T represents the total number of categories that users can select which allows the system to delineate 
the target. 𝑆𝑆𝑆𝑆𝑆𝑆�  denotes the predicted probability matrix which indicates the likelihood that a specific pixel belongs to 
particular categories or cell types, such as ring cells, Ki-67, or metastatic cells. Seg refers to the corresponding ground 
truth probability matrix. 

Then, the output probability matrix is put into the cross-entropy loss function, and hence gets multiplied by 
Seg, which represents the actual probability, either 1 or 0. For i×j×T times, the system iterates this action and accu-
mulate all the prediction  actual answer values to calculate the overall loss. Ideally, the loss would converge towards 
0, where 𝑆𝑆𝑆𝑆𝑆𝑆�   values are all 1 or 0. To reach so, it is necessary to train the system.  

Equation 4: Gradient descent (encoder) 
 

 
 

Here, 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒
𝑡𝑡 , short for weights, denotes the learnable parameters of the encoder at specific training time t. To 

update these parameters, we first compute the gradient of 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒
𝑡𝑡  with respect to the aforementioned loss function. The 

gradient is then multiplied by the learning rate, which controls the speed and stability of the learning process. 
To optimize the Wenct, the proposed system will iteratively subtract the derivativelearning rate from the 

original 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒
𝑡𝑡 , and it is defined as 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒

𝑡𝑡+1. 
Equation 5: Gradient descent (decoder)  

 

 
 
Just like the gradient descent algorithm for encoder, the decoder undergoes the same process. The gradient 

of 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑
𝑡𝑡  with respect to the loss function is computed, multiplied by learning rate, and gets subtracted from 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑

𝑡𝑡  , 
which is defined as 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑

𝑡𝑡+1. 
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Experimental Results 
 
Dataset 
 
To train and evaluate the proposed system, two datasets were used. The PanNuke dataset (Gamper et al. 2020) contains 
7,904 samples from various types of human organs. The other dataset, DeepLIIF dataset (Ghahremani et al. 2022) 
includes 1,624 samples with different protein stains such as Ki-67, LAP-2, and BCL-2. All samples from both datasets 
are stained with hematoxylin and eosin. For training and testing the proposed system, the two datasets were split into 
80% for training and 20% for testing.  
 

 
 
Figure 4. Snapshot of PanNuke dataset (Gamper et al. 2020) 
 
Evaluation Metric 
 
We utilized two evaluation metrics—pixel accuracy and Intersection over Union (IoU)—which are commonly used 
to assess the performance of semantic segmentation tasks. 

Equation 6: Pixel Accuracy 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

 
Shown in Equation 6, pixel accuracy is the ratio of the number of correctly predicted pixels to the total 

number of pixels. IoU can quantify the segmentation performance of the trained model (Zhang et al. 2008). It is the 
value of ground truth and prediction’s intersection area divided by their union area. When prediction and ground truth 
are overlapped, the intersection area is “true positive”, prediction minus intersection is “false positive”, and ground 
truth minus intersection is “false negative”. As a result, we can redefine the equation as shown below.  

Equation 7: IoU  
 

𝐼𝐼𝐼𝐼𝐼𝐼 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 

 
Performance Comparison  
 
Table 1: Performance comparison with different learning rate setups  
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LR: learning rate Pixel Accuracy IoU 
UNet (LR 1e-3) 74.7 % 0.6629 
UNet (LR-1e-4) 80.9% 0.7218 

UNet (LR 1e-4 with schedule ) 83.6 % 0.7954 
 
As shown in Table 1 and Figure 5, when learning rate was set as 0.001, pixel accuracy was 74.7% and IoU was 0.6629. 
With 10 times less learning rate, pixel accuracy and IoU increased to 80.9% and 0.7218 respectively. Moreover, the 
optimal performance was achieved when we applied a learning rate schedule. For the first 250 epochs, we set the 
learning rate at 0.0001 while the last 250 epochs was set in half of the previous learning rate, 0.00005. With this 
hyperparameter setting, the proposed system achieved a pixel accuracy of 83.6% and an IoU of 0.7954. 
 

 
 
Figure 5. Performance comparison with different learning rate setups  
 
Qualitative Experiement  
 
We also conducted qualitative experiments. Figure 6 shows some of the samples we tested. The boundaries between 
segmented cells are clear and the gap of segmentation between true mask and predicted mask is kept in small scale.  
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Figure 6. Qualitative experiment 
 

 

 
 
Figure 7. Ground truth alignment 
 
 Additionally, we performed a ground truth mask alignment experiment to visually assess the accuracy of the 
segmentation map generated by the proposed system. As shown in Figure 7, the system effectively isolates the target 
protein. This results clearly demonstrates the effectiveness of the proposed approach. By overlaying the segmented 
cells on the original pathology images, we expect that pathologists and biologists will be able to easily analyze and 
interpret the data which enhances the overall diagnostic process. 
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Conclusion 
 
To provide a solution for the problem that occurs when doctors conduct the traditional WSI, we created a machine 
learning model that can segmentate the selected target proteins in the high-resolution WSI image. Other than the 
providings of time and labor sufficienting benefits, the model also showed high accuracy at a pixel accuracy of 83.6% 
and IoU of 0.7954. As targeting proteins are available, it was shown to be possible to segmentate different types of 
proteins without using different machines for each protein. This new method we suggest could be a solution for all 
issues that the traditional method contains: time-consuming, labor-intensity, and accuracy. 
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