

Nutrients and Alzheimer's Disease

Alice Shu¹ and Nicole Katchur[#]

¹Belmont High School, USA

[#]Advisor

ABSTRACT

Alzheimer's disease is a type of dementia that causes neurodegeneration and memory loss that disrupts daily life. It is characterized by amyloid beta plaques and tau neurofibrillary tangles. Although there are medications to treat symptoms, Alzheimer's has no cure. However, several modifications like environment and lifestyle changes may reduce the progression of AD by reducing levels of oxidative stress. Oxidative stress is a factor that is heavily involved in the Alzheimer's pathway and results from an imbalance of reactive oxygen species. Therefore, this paper aims to highlight several beneficial diet changes that may improve the symptoms or slow the progression of AD.

Introduction

As of 2023, there are around 55 million worldwide cases of dementia, between 60 and 70% of which are Alzheimer's disease¹. Alzheimer's disease is a type of dementia in which memory loss gradually impacts an individual's ability to carry out daily life². The disease is characterized by specific proteins in the brain such as amyloid beta plaques and tau neurofibrillary tangles³. Amyloid plaques can interfere with cell signaling between synapses, and tau tangles disrupt signal and nutrient transfer along microtubules^{4,5}. In Alzheimer's, dysfunction and disruption by aberrant proteins may cause neuronal death⁶. Over time, neuronal death spreads throughout the brain, leading to neurodegeneration³.

Alzheimer's disease has no definite cure, although there are various medications to treat symptoms⁴. The FDA approved the drug, Lecanemab, which treats early Alzheimer's and is an antibody that targets amyloid beta plaques to help alleviate cognitive impairment⁷. However, the medication requires regular Magnetic resonance imaging (MRI) scans due to possible side effects of brain swelling and bleeding⁴. Another approved drug for moderate to severe Alzheimer's is memantine, an antagonistic drug that prevents disruption of synaptic transmission⁸, although patients have not displayed effective responses⁴. Since medications have limited benefit, research is investigating alternative treatments such as lifestyle changes. For instance, diet modifications can reduce risk factors and alleviate disease progression, and certain diets may be beneficial for neurodegenerative diseases⁵. For example, the Mediterranean diet may improve cognitive function in those with Alzheimer's disease^{6,9}. However, the processes by which these diets exert their beneficial effects are unknown. Therefore, in this review paper, we will highlight the mechanisms underlying diet that improve the symptoms or delay the progression of Alzheimer's disease.

Vitamins

Vitamin B6, B12, and B9 may improve Alzheimer's disease by lowering levels of homocysteine, a modifiable risk factor in vascular and neurodegenerative diseases^{10,11}. High levels of homocysteine in blood, hyperhomocysteinemia, can result from vitamin B deficiencies. Homocysteine is a sulfur-containing amino acid formed as an intermediate in methionine metabolism¹². Vitamin B9 known as folate, or its synthetic version folic acid, donates a methyl group to homocysteine to form methionine and S-adenosylmethionine (SAM), which is then converted to other intermediates, continuing the homocysteine-methionine cycle^{13,14}. Physiological levels of homocysteine are important because it is

an intermediate in methionine generation, an essential amino acid involved in regulating metabolic, immune, and digestive processes¹⁵. Methionine is also a precursor to glutathione, an antioxidant that protects neurons from oxidative stress¹⁶. A decrease in vitamin B decreases methyl group donors, and nutrient deficiency interrupts the homocysteine-methionine cycle and leads to homocysteine accumulation¹⁷.

In general, high homocysteine levels are linked to brain atrophy and cognitive decline^{18, 19, 20}. Hyperhomocysteinemia may lead to the formation of amyloid plaques by hydrolysis of the amyloid precursor protein (APP), producing amyloid beta polypeptides, a crucial step in Alzheimer's development as those proteins can misfold and result in AD^{21, 22}. Several studies followed older individuals over time to measure their plasma homocysteine levels. These studies revealed that a 5 micromoles per liter increase of plasma homocysteine above physiological levels increased Alzheimer's risk by 12-40%^{23, 21}. When taken together, these studies demonstrate that high homocysteine levels may be a risk factor for Alzheimer's disease. In addition, a meta-analysis study investigating the association between homocysteine, folate levels, and dementia concluded that compared to controls, dementia patients have higher homocysteine and lower folic acid levels²¹, suggesting that homocysteine may contribute to dementia progression. A study of individuals with mild cognitive impairment investigated the effects of vitamin B6, B9, and B12 on cognitive impairment and found that patients with vitamin B supplementation had approximately 30% lower plasma homocysteine levels as compared to controls¹⁹ showing that vitamin B supplementation may lower homocysteine. In addition, supplemented individuals had better outcomes on tests for global cognition, semantic, and episodic memory compared to controls. This shows a possible link between lower homocysteine levels, Vitamin B supplementation, and improvements in cognition. Vitamin B supplementation to reduce homocysteine levels may be a possible dietary change to alleviate Alzheimer's symptoms^{19, 20, 24, 25}.

E vitamins are a group of eight compounds that are fat-soluble antioxidants found in cell membranes²⁶ and have been shown to have neuroprotective, hypocholesterolemic, and anti-inflammatory properties^{26, 27, 28, 29}. Vitamin E can improve cognitive impairment by decreasing oxidative stress²⁹. Oxidative stress is an imbalance between reactive oxygen species (ROS), or free radicals, and the body's ability to remove them through antioxidants³⁰. Different ROS such as hydrogen peroxide can be formed from various biological pathways, but ROS are mainly produced by the mitochondria electron transport chain, where some O₂ is reduced to superoxide anions O₂⁻^{31, 32}. ROS can damage cellular structures and DNA^{33, 34, 35}. Oxidative stress can lead to a major cause of neurodegeneration, lipid peroxidation, where ROS attacks lipids and causes phospholipid degeneration^{36, 37}. Lipid peroxidation creates a lipid radical and an unstable lipid hydroperoxide that generates additional free radicals^{38, 26}. The brain is lipid-rich, making it particularly vulnerable to oxidative stress³⁹. Neurons are heavily affected because they are post-mitotic cells. In addition, the brain is mitochondria-rich, and its high metabolic rate, if unregulated, can potentially lead to ROS generation and increased oxidative stress⁴⁰. In Alzheimer's, amyloid beta can induce oxidative stress by binding to redox-active metals such as copper and iron that can generate ROS and create plaques. Copper and iron are important cofactors for neurotransmitter synthesis, myelin production, and synaptic signaling⁴¹. These metal-amyloid complexes generate more ROS⁴¹. In turn, this increased oxidative stress can increase amyloid beta production.

Antioxidants can combat oxidative stress by donating an electron pair to neutralize a reactive oxygen species⁴². Vitamin E is a lipophilic antioxidant that scavenges free radicals to stop chain initiation, a process that generates more free radicals²⁷. In a study investigating the relationship between oxidative stress and amyloid beta-induced apoptosis, researchers exposed cell cultures to amyloid beta fragments and reactive oxygen species such as hydrogen peroxide H₂O₂⁴³. They then added antioxidants such as alpha tocopherol, a form of vitamin E, to some cells⁴³. The study found that oxidative stress induced by amyloid beta peptides increased H₂O₂ by 400%, ultimately showing that amyloid beta increases oxidative stress by activating stress-activating protein kinases⁴³. They also found that the effect of oxidative stress, such as lipid peroxidation, was prevented by alpha tocopherol⁴³. In addition, researchers studied whether different forms of vitamin E would protect against cognitive decline from Alzheimer's in individuals older than 65 years of age⁴⁴. They found that combined intake of tocopherol forms was associated with a 26% reduction in risk per 5 mg/d increase in vitamin E intake^{26, 44}. This was consistent across factors such as sex, race, and age⁴⁴. This suggests that supplementing a diet with vitamin E may prevent or slow cognitive decline and ultimately reduce the

risk for Alzheimer's. An analysis of nutrition in 521 Alzheimer's patients found that their blood plasma contained significantly lower vitamin E levels when compared to cognitively healthy people⁴⁵. This could be due to Alzheimer's brains having increased oxidative stress, and as a result greater amounts of ROS. Vitamin E levels are lower in blood because antioxidants are being used up in combating excess free radicals⁴⁶. A study investigated the effect of alpha-tocopherol, memantine, and both combined as treatments for mild to moderate Alzheimer's⁴⁷. They found that the patients supplemented with 2000 IU/d of alpha tocopherol showed decreased functional and cognitive decline, with a delay in disease progression of 19% per year. However, both the memantine and memantine combined with alpha-tocopherol showed less effective results⁴⁷. One possible reason for the decreased effectiveness may be that memantine is used to treat moderate to severe cases. These studies altogether suggest that vitamin E could be beneficial to Alzheimer's by slowing cognitive decline.

Vitamin D is a group of fat soluble vitamins that is known for regulating calcium homeostasis and bone structure, but is also associated with improving cardiovascular disease, cognitive impairment, and dementia⁴⁸. It has two major forms, Vitamin D2 commonly found in food, and D3 which is mainly synthesized by skin exposure to sunlight⁴⁹. In the body, it is considered inert until it undergoes a series of hydroxylation reactions, where hydroxyl (OH) groups are added to convert it into active form 25-Hydroxyvitamin D or 1,25(OH)₂D^{49,50}. Vitamin D has regulatory effects on the brain through its Vitamin D receptors (VDR)⁵¹. VDR is in the hippocampus and prefrontal cortex, areas responsible for learning and memory. Additionally, VDR is most abundantly expressed in the substantia nigra, an area of the midbrain responsible for movement and reward functions. Researchers have found low vitamin D levels in patients with Parkinson's disease, a neurodegenerative disease that affects the substantia nigra. Vitamin D deficiency may be involved in multiple neurodegenerative diseases^{52,53,54}.

A prospective study followed older individuals without dementia to determine whether vitamin D deficiency was associated with an all-cause dementia and Alzheimer's risk increase⁵⁵. They found that people with a mild-moderate vitamin D deficiency had a 51% increased risk of dementia while severely vitamin D deficient individuals had a 122% increased risk⁵⁵. The observed risk was similar between Alzheimer's and all-cause dementia⁵⁵. Low levels of vitamin D are associated with Alzheimer's because vitamin D can regulate neurons through axon growth and enhances myelination^{55,56}. Myelinated sheaths in the central nervous system decrease with age and is associated with Alzheimer's pathology⁵⁷. Vitamin D may improve myelination by activating genes associated with myelin⁵⁸. As a result, low vitamin D levels may contribute to Alzheimer's pathway. Several other studies have reported an association between low vitamin D3 levels and Alzheimer's and dementia^{59,60,61}. Another study investigated the effects of vitamin D on Alzheimer's pathology by feeding transgenic app/ps1 mice vitamin D-deficient diets for 13 weeks, and measuring their learning and memory⁶². They found that vitamin D deficiency increased ROS in vitamin D-deficient mice as opposed to controls. In turn, increased oxidative stress may suppress the activity of glutathione peroxidase 4 (GPx4), and the cystine/glutamate antiporter (xCT). GPx4 is an enzyme that protects cells from lipid peroxidation, and xCT regulates the exchange of extracellular cystine and intracellular glutamate^{63,64}. Glutamate is a neurotransmitter in the central nervous system, although excessive glutamate transfer activity is associated with neurodegeneration in Alzheimer's^{65,66}. A prospective study on individuals without dementia explored the relationship between vitamin D supplementation and dementia⁶⁷. Researchers exposed some participants to vitamin D supplementation of three formulations: calcium-vitamin D, cholecalciferol, and ergocalciferol⁶⁷. They found that people with vitamin D supplementation were associated with 40% less dementia incidence compared to non-supplemented people⁶⁷. Vitamin D supplementation may be a potential treatment for slowing Alzheimer's symptoms and disease.

Antioxidants

Carotenoids are antioxidants and have neuroprotective properties such as being anti-inflammatory, and may prevent cognitive decline. Carotenoids are pigments contributing to plant photosynthesis; however, animals can't synthesize carotenoids and must gain them from food.⁶⁸ In animals, carotenoids are important for being a precursor to vitamin A, which is important for vision and the immune system^{68,69}. They also function in general as photo protectors and

antioxidants. While more than 600 carotenoids have been identified, research mainly focuses on beta carotene, alpha-carotene, beta-cryptoxanthin, lutein, and zeaxanthin. Beta carotene can be converted to vitamin A, and lutein is a macular eye pigment group of carotenoids found in the eye that protect the retina^{70,71,72,73}.

A study investigated whether Alzheimer's brains had lower levels of carotenoids than healthy elderly brains⁷³. Researchers analyzed and compared amounts of different carotenoids in the brains, and found that healthy brains had 1.5 times more lutein and 2 times more zeaxanthin than Alzheimer's brains⁷³. Decreased carotenoid levels would be reduced amounts of antioxidants, and increased oxidative stress and lipid peroxidation. People with higher amounts of lutein and zeaxanthin in their diets had up to 50% decreased risk of Alzheimer's⁷³. Carotenoid supplementation may reduce Alzheimer's disease risk and clinical progression. A study tested the effects of supplementing older people with lutein/zeaxanthin to see if carotenoid supplementation affected cognitive function⁷⁴. Lutein and zeaxanthin are isomers, meaning they have identical chemical formulas but differing structures and different functions. Lutein is more commonly found in fruits and vegetables compared to zeaxanthin⁷⁵. The study found that supplementing 10 mg of lutein and 2 mg of zeaxanthin for a year led to a statistically significant increase in cognitive attention and flexibility when compared to controls⁷⁴. A similar study evaluated the association between carotenoids and Alzheimer's risk. They found that increased intake of total carotenoids was associated with a 48% decrease in Alzheimer's. This suggests that carotenoids may be beneficial for decreasing Alzheimer's risk.

More than 8000 polyphenolic compounds have been discovered, but they are divided into two main classes, flavonoids and phenolic acids⁷⁶. Polyphenols protect plants from ultraviolet damage, pathogens, and when consumed by humans may protect against cancer, diabetes, cardiovascular and neurodegenerative disease⁷⁷. Polyphenols act as antioxidants because their phenolic groups can accept an electron and stabilize oxidative chain reactions, and as a result reduce oxidative stress^{76,77}. Polyphenols are one of the major compounds present in tea. Different teas contain varying amounts of polyphenols due to their fermentation and preparation process. Black tea most contains the flavonoids theaflavins and thearubigins, while green tea is especially rich in catechins. The main catechins in green tea are epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin, and epicatechin-3-gallate⁷⁸. Catechins can have antioxidant properties by chelating metal ions such as Fe²⁺ and Cu²⁺. Iron and copper are involved in the Alzheimer's pathway, as their binding to amyloid beta can induce oxidative stress. Catechins can prevent the generation of hydroxyl radical OH and other free radicals formed by the Fenton and Haber Weiss reactions by chelating metal ions^{79-81,82}. Chelation binds metal ions to a ligand through a coordination bond⁸³. Catechins can act as antioxidants by reducing excess iron and copper, and decreasing ROS generation. A study investigated whether prolonged green tea consumption affected oxidative stress as a result of aging⁸⁴. Researchers fed some mice green tea, and measured amounts of protein carbonyls, a biomarker of oxidative stress. They found that chronic green tea consumption decreased protein carbonyls when compared to controls. In addition, they observed lipid peroxidation by measuring amounts of malondialdehyde, a biomarker derived from peroxidation of polyunsaturated fatty acids^{84,85}. They found that as mice aged, malondialdehyde levels increased by 70%, but green tea-treated mice had lower levels than controls. Another study fed Alzheimer's-like mice EGCG specifically, to determine whether EGCG was beneficial for Alzheimer's disease⁸⁶. They found that oral EGCG treatment improved expression of synaptic proteins, increased anti-inflammatory cytokines, and alleviated microglia activation compared to controls. Alzheimer's exhibits synaptic damage and brain inflammation is heavily involved in disease progression^{86,87}. Microglia are the brain's primary immune cells. Increased anti-inflammatory cytokines and decreased microglia activation is associated with less inflammation. Catechins may prevent the generation of free radicals and decrease oxidative stress.

A prospective cohort study of Japanese people aged 65 years or older investigated whether consumption of green tea was associated with dementia risk. They found that green tea consumption is significantly associated with a lower dementia risk⁸⁸. However, not all types of tea have the same impact. A study investigated the effects of green, red, and black tea on mice to discover whether there were neuroprotective benefits^{88,89}. They found that while green tea prevented oxidative stress and lipid peroxidation, there was no significant improvement with red and black tea⁸⁸. This could be because green tea has the highest EGCG concentration, with EGCG comprising up to 80% of green tea

polyphenols⁹⁰. Polyphenols, especially catechins in green tea, may prevent the generation of free radicals and decrease oxidative stress to improve Alzheimer's.

Discussion

Specific vitamins and antioxidants may alleviate Alzheimer's symptoms and slow clinical progression, such as the vitamins B, E, and D. The brain is vulnerable to oxidative stress, but antioxidants can help regulate oxidative stress by neutralizing ROS. Vitamin B supplementation helps by regulating homocysteine, an intermediate in methionine metabolism. Vitamin E is also an antioxidant, and neutralizes ROS. Vitamin E supplementation has been shown to decrease lipid peroxidation and oxidative stress. Vitamin D is known for regulating calcium homeostasis, as well as neuron growth through increasing myelination. Vitamin D deficiency has been associated with increased Alzheimer's risk. In addition to vitamins, this review also focused on antioxidants such as carotenoids and polyphenols. Supplementation of carotenoids and polyphenols were shown to decrease Alzheimer's risk and clinical progression.

Although this review researched a wide variety of vitamins and antioxidants, there are still many others that could potentially benefit Alzheimer's patients. Vitamins B6, B9, and B12 were the main focus of supplementation to regulate homocysteine levels. There are also different forms of Vitamin E, but this study mainly focused on the effects of alpha-tocopherol. In addition, there are more than 600 carotenoids and 8000 polyphenols discovered, but this study focused on lutein, zeaxanthin, and the catechin EGCG⁷⁶. However, these vitamins and antioxidants may not benefit people equally. For example, Vitamin E reduced lipid peroxidation and amyloid beta in Alzheimer's like mice with moderate progression, but had no significant effect on mice with severe cases. Vitamin E is effective for mild and moderate stages of Alzheimer's disease, however, it may be ineffective for severe disease stages and its benefits will vary among patients.⁹¹ Similarly, Vitamin D supplementation may have a stronger benefit in females than males, possibly because of estrogen levels⁶⁷. Regarding polyphenols, not all teas are as beneficial to Alzheimer's, since red and black tea were shown to have no significant improvement on oxidative stress^{88,89}. Studies have shown that people may need to drink between 5 to 6 cups a day to experience the benefit⁹². While these nutrients may not be effective for some individuals, many individuals experience an improvement in symptom burden. Therefore, vitamins and polyphenols may be an effective adjunctive therapy for patients with Alzheimer's disease.

Specific diets high in the vitamins and antioxidants discussed in this review may be a possible lifestyle change in protecting against Alzheimer's. Vitamins B6, B9, and B12 are found in fish, meat, poultry, and dairy products. While B12 is not commonly found in plants, B6 and B9 are also present in starchy or dark green leafy vegetables⁹³⁻⁹⁵. Vitamin E's alpha-tocopherol is prevalent in nuts, seeds, and vegetable oils⁹⁶. While vitamin D is also obtained through sun exposure, it can be found in fatty fish⁹⁷. Carotenoids can be found in brightly colored or leafy green fruits and vegetables⁹⁸. Polyphenols can be found in berries, nuts, and like this review discussed, tea⁹⁹. Researchers have found the Mediterranean diet to reduce Alzheimer's risk, as the diet contains adequate amounts of the vitamins and antioxidants discussed in the review paper⁹⁹⁻¹⁰¹. The mediterranean diet is a primarily plant-based diet with lower amounts of meat, fish, and dairy consumption^{99,102}. Olive oil and nuts contain various polyphenols, whereas vegetables and meat contain vitamins discussed in the review¹⁰³. In comparison, the Western diet is characterized by high consumption of red meat, processed desserts, refined oils, and low intake of fruit and vegetables¹⁰³⁻¹⁰⁵. These foods do not offer adequate amounts of nutrients, and imbalance of nutrition can lead to diseases such as cardiovascular disease, inflammation, and increased risk for neurodegenerative diseases¹⁰⁶. Consuming foods or adhering to diets containing supplemented amounts of these nutrients, such as vitamins and antioxidants, may help alleviate Alzheimer's symptoms and progression.

Conclusion

Alzheimer's disease is characterized by amyloid beta plaques and tau neurofibrillary tangles. Oxidative stress can increase the diseases' clinical progression, but supplementation with vitamins B, E, and D as well as antioxidants such as carotenoids and polyphenols may decrease oxidative stress and disease risk. Diets that contain high amounts of these specific nutrients may be beneficial to Alzheimer's, although these nutrients may not benefit all patients equally. Therefore, future research should further investigate the relationship between nutrients and Alzheimer's disease.

Acknowledgments

I would like to thank my advisor for the valuable insight provided to me on this topic.

References

1. Dementia. <https://www.who.int/news-room/fact-sheets/detail/dementia>.
2. What is Alzheimer's Disease? <https://www.cdc.gov/aging/aginginfo/alzheimers.htm> (2023).
3. What Causes Alzheimer's Disease? <https://www.nia.nih.gov/health/alzheimers-causes-and-risk-factors/what-causes-alzheimers-disease> (2024).
4. How is Alzheimer's Disease Treated?. <https://www.nia.nih.gov/health/alzheimers-treatment/how-alzheimers-disease-treated>.
5. Petersson, S. D. & Philippou, E. Mediterranean Diet, Cognitive Function, and Dementia: A Systematic Review of the Evidence. *Adv. Nutr.* 7, (2016).
6. Bloom, G. S. Amyloid- β and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis. *JAMA Neurol.* 71, 505–508 (2014).
7. van Dyck, C. H. *et al.* Lecanemab in Early Alzheimer's Disease. *N. Engl. J. Med.* 388, 9–21 (2023).
8. Danysz, W. & Parsons, C. G. Alzheimer's disease, β -amyloid, glutamate, NMDA receptors and memantine – searching for the connections. *Br. J. Pharmacol.* 167, 324–352 (2012).
9. Berti, V. *et al.* Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. *Neurology* 90, e1789–e1798 (2018).
10. David Smith, A. *et al.* Homocysteine and Dementia: An International Consensus Statement. *J. Alzheimers. Dis.* 62, 561 (2018).
11. Fratoni, V. & Brandi, M. L. B Vitamins, Homocysteine and Bone Health. *Nutrients* 7, 2176 (2015).
12. Ganguly, P. & Alam, S. F. Role of homocysteine in the development of cardiovascular disease. *Nutr. J.* 14, 1–10 (2015).
13. Homocysteine-methionine cycle is a metabolic sensor system controlling methylation-regulated pathological signaling. *Redox Biology* 28, 101322 (2020).
14. Vitamin B6s inhibit oxidative stress caused by Alzheimer's disease-related CuII- β -amyloid complexes—cooperative action of phospho-moiety. *Bioorg. Med. Chem. Lett.* 21, 6430–6432 (2011).
15. Martínez, Y. *et al.* The role of methionine on metabolism, oxidative stress, and diseases. *Amino Acids* 49, 2091–2098 (2017).
16. Iskusnykh, I. Y., Zakharova, A. A. & Pathak, D. Glutathione in Brain Disorders and Aging. *Molecules* 27, (2022).
17. Alzheimer's disease pathogenesis: Is there a role for folate? *Mech. Ageing Dev.* 174, 86–94 (2018).
18. Critical levels of brain atrophy associated with homocysteine and cognitive decline. *Neurobiol. Aging* 35, S35–S39 (2014).
19. de Jager, C. A., Oulhaj, A., Jacoby, R., Refsum, H. & David Smith, A. Cognitive and clinical outcomes of

homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. *Int. J. Geriatr. Psychiatry* 27, 592–600 (2012).

- 20. Meng, H. *et al.* The relationship between cognitive impairment and homocysteine in a B12 and folate deficient population in China: A cross-sectional study. *Medicine* 98, e17970 (2019).
- 21. Wang, Q., Zhao, J., Chang, H., Liu, X. & Zhu, R. Homocysteine and Folic Acid: Risk Factors for Alzheimer's Disease—An Updated Meta-Analysis. *Front. Aging Neurosci.* 13, 665114 (2021).
- 22. O'Brien, R. J. & Wong, P. C. Amyloid Precursor Protein Processing and Alzheimer's Disease. *Annu. Rev. Neurosci.* 34, 185 (2011).
- 23. Seshadri, S. *et al.* Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer's Disease. (2002) doi:10.1056/NEJMoa011613.
- 24. Chen, H. *et al.* Folic Acid Supplementation Mitigates Alzheimer's Disease by Reducing Inflammation: A Randomized Controlled Trial. *Mediators Inflamm.* 2016, 5912146 (2016).
- 25. An, Y. *et al.* Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. *Clin. Epigenetics* 11, 1–19 (2019).
- 26. Lloret, A., Esteve, D., Monllor, P., Cervera-Ferri, A. & Lloret, A. The Effectiveness of Vitamin E Treatment in Alzheimer's Disease. *Int. J. Mol. Sci.* 20, 879 (2019).
- 27. Grimm, M. O. W., Mett, J. & Hartmann, T. The Impact of Vitamin E and Other Fat-Soluble Vitamins on Alzheimer's Disease. *Int. J. Mol. Sci.* 17, 1785 (2016).
- 28. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. *Free Radical Biology and Medicine* 72, 76–90 (2014).
- 29. Gugliandolo, A., Bramanti, P. & Mazzon, E. Role of Vitamin E in the Treatment of Alzheimer's Disease: Evidence from Animal Models. *Int. J. Mol. Sci.* 18, 2504 (2017).
- 30. Pizzino, G. *et al.* Oxidative Stress: Harms and Benefits for Human Health. *Oxid. Med. Cell. Longev.* 2017, (2017).
- 31. Alfadda, A. A. & Sallam, R. M. Reactive Oxygen Species in Health and Disease. *Biomed Res. Int.* 2012, 936486 (2012).
- 32. Snezhkina, A. V. *et al.* ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. *Oxid. Med. Cell. Longev.* 2019, (2019).
- 33. Sharifi-Rad, M. *et al.* Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. *Front. Physiol.* 11, 552535 (2020).
- 34. Zhao, Y. & Zhao, B. Oxidative Stress and the Pathogenesis of Alzheimer's Disease. *Oxid. Med. Cell. Longev.* 2013, 316523 (2013).
- 35. Ansari, M. A. & Scheff, S. W. Oxidative Stress in the Progression of Alzheimer Disease in the Frontal Cortex. *J. Neuropathol. Exp. Neurol.* 69, 155–167 (2010).
- 36. Oxidative stress, protein modification and Alzheimer disease. *Brain Res. Bull.* 133, 88–96 (2017).
- 37. The role of antioxidants in the chemistry of oxidative stress: A review. *Eur. J. Med. Chem.* 97, 55–74 (2015).
- 38. Barrera, G. Oxidative Stress and Lipid Peroxidation Products in Cancer Progression and Therapy. *International Scholarly Research Notices* 2012, 137289 (2012).
- 39. Huang, W., Zhang, X. & Chen, W. Role of oxidative stress in Alzheimer's disease (Review). *Biomedical Reports* 4, 519–522 (2016).
- 40. Rango, M. & Bresolin, N. Brain Mitochondria, Aging, and Parkinson's Disease. *Genes* 9, 250 (2018).
- 41. Emerging roles of oxidative stress in brain aging and Alzheimer's disease. *Neurobiol. Aging* 107, 86–95 (2021).
- 42. Lobo, V., Patil, A., Phatak, A. & Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. *Pharmacogn. Rev.* 4, 118 (2010).
- 43. Multiple signaling events in amyloid β -induced, oxidative stress-dependent neuronal apoptosis. *Free Radical*

Biology and Medicine 35, 45–58 (2003).

44. Relation of the tocopherol forms to incident Alzheimer disease and to cognitive change. *Am. J. Clin. Nutr.* 81, 508–514 (2005).
45. Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. *Neurobiol. Aging* 33, 2282–2290 (2012).
46. da Silva, S. L. *et al.* Plasma nutrient status of patients with Alzheimer's disease: Systematic review and meta-analysis. *Alzheimers. Dement.* 10, 485–502 (2014).
47. Dysken, M. W. *et al.* Effect of Vitamin E and Memantine on Functional Decline in Alzheimer Disease: The TEAM-AD VA Cooperative Randomized Trial. *JAMA* 311, 33–44 (2014).
48. Catharine Ross, A., Taylor, C. L., Yaktine, A. L. & Del Valle, H. B. Dietary Reference Intakes for Calcium and Vitamin D. (2011) doi:10.17226/13050.
49. Catharine Ross, A., Taylor, C. L., Yaktine, A. L. & Del Valle, H. B. Overview of Vitamin D. in *Dietary Reference Intakes for Calcium and Vitamin D* (National Academies Press (US), 2011).
50. Banerjee, A. *et al.* Vitamin D and Alzheimer's Disease: Neurocognition to Therapeutics. *International Journal of Alzheimer's Disease* 2015, 192747 (2015).
51. Zong, L., Chu, P., Huang, P., Guo, Y. & Lv, Y. Effect of vitamin D on the learning and memory ability of FGR rat and NMDA receptor expression in hippocampus. *Exp. Ther. Med.* 14, 581–586 (2017).
52. Vitamin D and the brain: Key questions for future research. *J. Steroid Biochem. Mol. Biol.* 148, 305–309 (2015).
53. Behl, T. *et al.* Understanding the role of 'sunshine vitamin D' in Parkinson's disease: A review. *Front. Pharmacol.* 13, 993033 (2022).
54. The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. *Neuroscience* 236, 77–87 (2013).
55. Vitamin D and the risk of dementia and Alzheimer disease. *Neurology* <https://www.neurology.org/doi/10.1212/WNL.0000000000000755>.
56. Habib, A. M., Nagi, K., Thillaippappan, N. B., Sukumaran, V. & Akhtar, S. Vitamin D and Its Potential Interplay With Pain Signaling Pathways. *Front. Immunol.* 11, 523854 (2020).
57. Papuć, E. & Rejdak, K. The role of myelin damage in Alzheimer's disease pathology. *Arch. Med. Sci.* 16, 345 (2020).
58. Chabas, J.-F. *et al.* Cholecalciferol (Vitamin D3) Improves Myelination and Recovery after Nerve Injury. *PLoS One* 8, e65034 (2013).
59. Inadequate supply of vitamins and DHA in the elderly: Implications for brain aging and Alzheimer-type dementia. *Nutrition* 31, 261–275 (2015).
60. Vitamin D, cognition, and dementia. *Neurology* <https://www.neurology.org/doi/10.1212/WNL.0b013e31826c197f>.
61. Llewellyn, D. J. *et al.* Vitamin D and Risk of Cognitive Decline in Elderly Persons. *Arch. Intern. Med.* 170, 1135–1141 (2010).
62. Vitamin D deficiency exacerbates Alzheimer-like pathologies by reducing antioxidant capacity. *Free Radical Biology and Medicine* 161, 139–149 (2020).
63. Ma, T. *et al.* GPX4-independent ferroptosis—a new strategy in disease's therapy. *Cell Death Discovery* 8, 1–8 (2022).
64. Liu, J., Xia, X. & Huang, P. xCT: A Critical Molecule That Links Cancer Metabolism to Redox Signaling. *Mol. Ther.* 28, 2358 (2020).
65. Wang, R. & Hemachandra Reddy, P. Role of glutamate and NMDA receptors in Alzheimer's disease. *J. Alzheimers. Dis.* 57, 1041 (2017).
66. Institute of Medicine (US) Forum on Neuroscience & Disorders, N. S. Overview of the Glutamatergic System. in *Glutamate-Related Biomarkers in Drug Development for Disorders of the Nervous System: Workshop*

Summary (National Academies Press (US), 2011).

67. Ghahremani, M. *et al.* Vitamin D supplementation and incident dementia: Effects of sex, APOE, and baseline cognitive status. *Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring* 15, e12404 (2023).
68. Maoka, T. Carotenoids as natural functional pigments. *J. Nat. Med.* 74, 1 (2020).
69. Vitamin A and Carotenoids. <https://ods.od.nih.gov/factsheets/VitaminA-Consumer/>.
70. Loskutova, E., Nolan, J., Howard, A. & Beatty, S. Macular Pigment and Its Contribution to Vision. *Nutrients* 5, 1962 (2013).
71. Carotenoids in human nutrition and health. *Arch. Biochem. Biophys.* 652, 18–26 (2018).
72. Young, A. J. & Lowe, G. L. Carotenoids-Antioxidant Properties. *Antioxidants (Basel)* 7, (2018).
73. Dorey, C. K., Gierhart, D., Fitch, K. A., Crandell, I. & Craft, N. E. Low Xanthophylls, Retinol, Lycopene, and Tocopherols in Grey and White Matter of Brains with Alzheimer's Disease. *J. Alzheimers. Dis.* 94, 1–17 (2023).
74. Hammond, B. R. *et al.* Effects of Lutein/Zeaxanthin Supplementation on the Cognitive Function of Community Dwelling Older Adults: A Randomized, Double-Masked, Placebo-Controlled Trial. *Front. Aging Neurosci.* 9, 243556 (2017).
75. Mozaffarieh, M., Sacu, S. & Wedrich, A. The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: a review based on controversial evidence. *Nutr. J.* 2, 20 (2003).
76. Pandey, K. B. & Rizvi, S. I. Plant polyphenols as dietary antioxidants in human health and disease. *Oxid. Med. Cell. Longev.* 2, 270 (2009).
77. Abbas, M. *et al.* Natural polyphenols: An overview. *Int. J. Food Prop.* (2017) doi:10.1080/10942912.2016.1220393.
78. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer's disease. *Brain Res. Bull.* 87, 144–153 (2012).
79. Zwolak, I. Epigallocatechin Gallate for Management of Heavy Metal-Induced Oxidative Stress: Mechanisms of Action, Efficacy, and Concerns. *Int. J. Mol. Sci.* 22, (2021).
80. Weinreb, O., Amit, T., Mandel, S. & Youdim, M. B. H. Neuroprotective molecular mechanisms of (−)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. *Genes Nutr.* 4, 283 (2009).
81. Fernandes, L., Cardim-Pires, T. R., Foguel, D. & Palhano, F. L. Green Tea Polyphenol Epigallocatechin-Gallate in Amyloid Aggregation and Neurodegenerative Diseases. *Front. Neurosci.* 15, 718188 (2021).
82. The Haber–Weiss reaction and mechanisms of toxicity. *Toxicology* 149, 43–50 (2000).
83. Flora, S. J. S. & Pachauri, V. Chelation in Metal Intoxication. *Int. J. Environ. Res. Public Health* 7, 2745 (2010).
84. Chronic green tea consumption prevents age-related changes in rat hippocampal formation. *Neurobiol. Aging* 32, 707–717 (2011).
85. Cordiano, R. *et al.* Malondialdehyde as a Potential Oxidative Stress Marker for Allergy-Oriented Diseases: An Update. *Molecules* 28, 5979 (2023).
86. Bao, J. *et al.* Epigallocatechin-3-gallate Alleviates Cognitive Deficits in APP/PS1 Mice. *Current Medical Science* 40, 18–27 (2020).
87. John, A. & Reddy, P. H. Synaptic basis of Alzheimer's disease: Focus on synaptic amyloid beta, P-tau and mitochondria. *Ageing Res. Rev.* 65, 101208 (2021).
88. Green Tea Consumption and the Risk of Incident Dementia in Elderly Japanese: The Ohsaki Cohort 2006 Study. *Am. J. Geriatr. Psychiatry* 24, 881–889 (2016).
89. Green tea supplementation produces better neuroprotective effects than red and black tea in Alzheimer-like rat model. *Food Res. Int.* 100, 442–448 (2017).
90. Park, J., Park, R., Jang, M. & Park, Y.-I. Therapeutic Potential of EGCG, a Green Tea Polyphenol, for Treatment of Coronavirus Diseases. *Life* 11, (2021).

91. Early Vitamin E supplementation in young but not aged mice reduces A β levels and amyloid deposition in a transgenic model of Alzheimer's disease. <http://dx.doi.org/10.1096/fj.03-0961fje> doi:10.1096/fj.03-0961fje.
92. Sun, Y. *et al.* Extra cup of tea intake associated with increased risk of Alzheimer's disease: Genetic insights from Mendelian randomization. *Front. Nutr.* 10, 1052281 (2023).
93. Folate. <https://ods.od.nih.gov/factsheets/Folate-HealthProfessional/>.
94. Vitamin B6. <https://ods.od.nih.gov/factsheets/VitaminB6-HealthProfessional/>.
95. Watanabe, F. & Bito, T. Vitamin B sources and microbial interaction. *Exp. Biol. Med.* 243, 148–158 (2018).
96. Dietrich, M. *et al.* Does gamma-tocopherol play a role in the primary prevention of heart disease and cancer? A review. *J. Am. Coll. Nutr.* 25, 292–299 (2006).
97. Borel, P., Caillaud, D. & Cano, N. J. Vitamin D bioavailability: state of the art. *Crit. Rev. Food Sci. Nutr.* 55, 1193–1205 (2015).
98. Meléndez-Martínez, A. J. *et al.* A comprehensive review on carotenoids in foods and feeds: status quo, applications, patents, and research needs. *Crit. Rev. Food Sci. Nutr.* (2022) doi:10.1080/10408398.2020.1867959.
99. Guasch-Ferré, M., Merino, J., Sun, Q., Fitó, M. & Salas-Salvadó, J. Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence. *Oxid. Med. Cell. Longev.* 2017, (2017).
100. MIND diet associated with reduced incidence of Alzheimer's disease. *Alzheimers. Dement.* 11, 1007–1014 (2015).
101. Aridi, Y. S., Walker, J. L. & Wright, O. R. L. The Association between the Mediterranean Dietary Pattern and Cognitive Health: A Systematic Review. *Nutrients* 9, 674 (2017).
102. The Mediterranean Diet, its Components, and Cardiovascular Disease. *Am. J. Med.* 128, 229–238 (2015).
103. Mediterranean diet: The role of long-chain ω -3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. *Rev. Neurol.* 175, 724–741 (2019).
104. Zhang, R. *et al.* The Difference in Nutrient Intakes between Chinese and Mediterranean, Japanese and American Diets. *Nutrients* 7, 4661–4688 (2015).
105. García-Montero, C. *et al.* Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota–Immune System Interplay. Implications for Health and Disease. *Nutrients* 13, 699 (2021).
106. Clemente-Suárez, V. J., Beltrán-Velasco, A. I., Redondo-Flórez, L., Martín-Rodríguez, A. & Tornero-Aguilera, J. F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. *Nutrients* 15, (2023).