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ABSTRACT

Biopatch is emerging as an innovative device in the field of health monitoring. The goal of this article is to create an
adhesive biopatch that can be applied to the user's skin to measure electrocardiogram (ECG), body temperature, and
inertial measurement unit (IMU) data. Then, sets of data are then collected in four different environments: running
with and without water intake, and resting with and without water intake. In this case, the ECG data was analyzed to
indicate the user's hydration state. Future applications of this data involve the integration of machine learning algo-
rithms to predict hydration levels, contributing to essential health monitoring. Although this technology has the po-
tential to improve personal healthcare, more research and technological advancement are needed to reach its full po-
tential.

Introduction

Biopatch is a small, adhesive device that could redefine personal health monitoring. While patches might seem simple,
this one goes beyond just sticking to your skin; it bridges the gap between biology and technology, creating a bio-
interfaced tool that could be vital for our well-being.'

The biopatch is designed to monitor key physiological signals, including ECG, body temperature, and IMU,
offering a non-invasive way to assess a user’s health in real-time.> Whether you're running a marathon, resting after a
workout, or simply going about your daily life, this device can provide crucial data on your hydration state—a vital
indicator of overall health. By tracking these signals in different scenarios, such as exercising with and without water
intake, the biopatch aims to detect imbalances that could indicate dehydration or electrolyte deficiencies.?

This article explores the development and potential applications of the biopatch, investigating its ability to
collect and analyze data. The article also examines how machine learning could be leveraged to predict hydration
levels, offering a glimpse into the future of personalized healthcare.*

Materials

Wearable electronics, such as the biopatch, have become increasingly essential for health monitoring due to their
ability to provide real-time, continuous data in a non-invasive manner.' In this research, the biopatch was designed as
a lightweight (6.5 g), flexible, and compact wearable health monitoring device, measuring 8.5 cm x 4.0 cm, with an
adhesive thickness of 0.28 mm and a module thickness of 3.0 mm. Its form factor allowed for ease of use without
requiring additional tools or specialized training, making it highly accessible for general users in environments where
continuous physiological monitoring is critical.?

ISSN: 2167-1907 www.JSR.org/hs 1



HIGH SCHOOL EDITION

@ Journal of Student Rescarch

Volume 14 Issue 1 (2025)

At the core of the biopatch was a wireless sensor module powered by a 105 mAh lithium-ion polymer battery
(LP401230, Adafruit), designed for low-power, long-term use. The wireless capabilities of this module enabled seam-
less data collection without restricting the wearer's movement, a crucial factor in real-time monitoring applications.?
The sensor module integrated several key components for sensing, signal processing, and wireless data transmission.
Specifically, it houses an analog-to-digital converter (ADC, ADS1292, Texas Instruments) to capture ECG signals, a
digital temperature sensor (TMP117, Texas Instruments) with £0.1 °C accuracy for body temperature monitoring, and
a motion sensor (ICM-20948, TDK Corporation) to detect linear and angular acceleration along three axes at 50 Hz.2
All these components were managed by a System-on-Chip module (nRF52832, Nordic Semiconductors), which pro-
cessed the data and transmits it via Bluetooth Low Energy (BLE) to an Android smartphone for real-time analysis and
storage.’

The ECG monitoring functionality of the biopatch was designed to capture and analyze physiological signals
in real-time, a capability increasingly relevant in clinical and research settings. The soft, flexible design of the device
allowed for improved adherence to the skin, particularly during prolonged usage in activities such as exercise moni-
toring.*

Figure 1. Wireless Sensor Module and Lithium-Ion Battery
Fabrication and Assembly of Biopatch

Fabrication of Electrodes

The fabrication of the biopatch's flexible electronics leveraged advanced microfabrication techniques to ensure dura-
bility and flexibility. The ECG electrodes were deposited with chromium (5 nm) and copper (200 nm) using micro-
fabrication techniques similar to those used in other soft bioelectronics applications.’ The electrodes were then pat-
terned using a femtosecond infrared laser micromachining system (WS-Flex, Optec), a technique known for its preci-
sion in creating complex geometries while maintaining material integrity.? This method allowed for the laser cutting
of electrodes in a serpentine pattern on a 12.7 pm thick polyimide substrate (Kapton SOHN, DuPont), which enhanced
mechanical stretchability. The serpentine design was a strategy for ensuring that the electrodes can stretch by up to
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30% without electrical failure, a crucial feature for continuous monitoring in high-motion environments, such as ex-
ercise or everyday activities.*

Fabrication of Adhesive Tape

Once the polyimide substrate with the electrodes was fabricated, it was laminated onto a silicone elastomer (Ecoflex
0030, Smooth-On). The use of Ecoflex ensured that the biopatch remained flexible and stretchable while providing
insulation and protection for the sensitive electronic components. The electrodes were then integrated directly into the
adhesive side of 3M 9907T medical-grade tape, which is breathable and promotes robust skin-electrode contact.? This
integration ensured that the electrodes remain securely attached to the skin, even during periods of sweating or physical
activity. To further protect the module from environmental factors such as dust, sweat, and friction from clothing, an
additional layer of smaller cover tape was applied over the module.”

Assembly

During the assembly process, the wireless sensor module and the lithium-ion battery were securely bonded using
superglue, ensuring compact integration of the power source with the electronics. This compact integration was crucial
for maintaining the flexibility of the biopatch while minimizing bulk.? Ecoflex was applied to attach the combined
module and battery to the adhesive tape, ensuring a durable yet flexible bond. The electrode tip was then soldered to
the backside of the module to optimize signal transmission from the skin to the processing unit.

After the assembly was completed, the biopatch underwent an oven-curing process for 20 minutes, which
ensured that the materials were fully set and that the mechanical integrity of the final product was stable. This process
allowed the biopatch to withstand environmental stresses and ensured its functionality in both resting and active con-
ditions. The final product, as shown in Figure 2, is a compact, wearable patch capable of continuous monitoring and
resistant to environmental conditions.

Figure 2. Assembled Biopatch
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Data Acquisition and Processing

Data Acquisition

Experiment Overview
To evaluate the biopatch's effectiveness in measuring ECG signals under different hydration conditions, two treadmill
experiments were conducted on separate days. The primary aim was to gather ECG data in four distinct scenarios:
running without drinking water, running with drinking water, resting without drinking water, and resting with drinking
water. These conditions mimic real-world situations where hydration levels affect physiological performance, partic-
ularly heart function.

The treadmill experiments were structured as follows:

Experiment 1 (No Water):

30 min incline at 3°, 4°, and 4.5°

30 min rest

30 min incline at 4.5°

5 min rest

30 min incline at 4.5°

10 min standing

In this experiment, no water was consumed throughout the running and resting periods to simulate a dehy-
drated state. The goal was to observe how a lack of hydration affects the ECG signals during both activity and rest
phases.

Experiment 2 (With Water):

30 min incline at 3°, 4°, and 4.5° (water intake every 5 minutes, experiment stopped at ~1870 seconds)

30 min rest (water intake as needed)

30 min incline at 4.5° (water intake as needed)

5 min rest

30 min incline at 4.5° (water intake as needed)

10 min standing (water intake as needed)

In this second experiment, water was consumed at regular intervals, with hydration provided every 5 minutes
during running. The resting period also allowed for water intake at the participant's discretion, mimicking a hydrated
state.

During Experiment

ECG data were collected continuously throughout the treadmill sessions using a custom biopatch. The signals were
transmitted wirelessly to an Android smartphone, where they were stored in CSV format for further analysis. The
ECG data were recorded at a sampling rate of 250 Hz, providing high temporal resolution to capture the detailed
morphology of the cardiac cycle. In addition to the ECG signals, body temperature and motion data were collected
simultaneously to provide context for interpreting physiological responses, particularly hydration status.

The data collection resulted in four distinct datasets:

Running without drinking water

Running with drinking water

Resting without drinking water

Resting with drinking water
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Figure 3. Wireless ECG Monitoring during Exercise using a Wearable Biopatch. Created with BioRender.com

Data Processing in MATLAB

Once the raw ECG data were obtained, they were preprocessed in MATLAB to remove noise and artifacts, making
them suitable for detailed analysis. The signals were initially loaded from the CSV files and subjected to a series of
filtering techniques designed to clean and standardize the data. A notch filter was first applied to remove powerline
interference at 60 Hz, a common source of electrical noise in biomedical signals.® " This process effectively eliminated
external noise without distorting the ECG signal, preserving the integrity of the data for further analysis.®

Following this, a bandpass filter was implemented to isolate the specific frequency range relevant to the ECG
signal, while reducing baseline wander and high-frequency noise.® This step ensured the retention of critical ECG
components, such as the QRS complex, T-wave, and P-wave, while discarding irrelevant noise.” Additionally, a base-
line drift removal filter was used to correct for slow signal variations caused by subject movement or respiration, a
frequent issue in real-world physiological data collection.® This process ensured the stability of the ECG signal, al-
lowing for clearer interpretation of the underlying cardiac activity.’

After filtering, the ECG signals were normalized by scaling them to a consistent range. This normalization
allowed for more accurate comparisons across different sessions and subjects by minimizing amplitude variations
caused by differences in electrode placement or skin conductivity.'” The signals were scaled between 0 and 1, using
the minimum and maximum values within each dataset to maintain consistency.

Once preprocessing was complete, the ECG signals were segmented into time windows, allowing for com-
parisons between experimental conditions such as running versus resting, and hydrated versus dehydrated states.
MATLAB was then used to extract key features from the ECG signals, including R-R intervals and the morphology
of the QRS complex.!! These features were further analyzed to identify patterns that could indicate changes in hydra-
tion status, such as increased heart rate variability and altered QRS morphology under dehydrated conditions.'? '3
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By applying these signal processing techniques, the ECG data were prepared for additional statistical analyses, ena-
bling the assessment of physiological impacts related to hydration and physical exertion during exercise.

ECG Signal Generation

After the data had been processed, the CSV files generated from the wearable biopatch were imported into Labplot2
for visual representation. Time vectors were created to represent the duration of each recording session, and these
vectors were combined with the processed ECG signals.® ° The data were plotted using Labplot’s built-in graphing
capabilities, which resulted in the creation of detailed ECG graphs that depicted the heart's electrical activity over time
for each subject and condition.

These visual representations in Labplot2 provided clear comparisons between different hydration and activity
states. In each dataset, key features of the ECG waveforms, including P-waves, QRS complexes, and T-waves, were
prominently displayed.® 2 These features allowed for the observation of the heart's electrical response under varying
conditions, offering valuable insights into how hydration impacts cardiac function.'® * The consistency and clarity of
the graphs facilitated the identification of crucial ECG markers, such as R-peaks, which were used for the analysis of
heart rate and heart rate variability.

The graphical representation of the ECG data laid a strong foundation for further analysis and interpretation,
allowing for an in-depth assessment of how hydration affects cardiac performance during physical exercise.

Analysis of ECG Patterns

The ECG data were segmented into four different datasets, each representing a specific combination of hydration and
activity: Green (resting with drinking water), Red (running with drinking water), Blue (resting without drinking wa-
ter), and Pink (running without drinking water).
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Figure 4. Segments of ECG of 4 different datasets. The first graph (green) refers to resting with drinking water, the
second graph (red) refers to running with drinking water, the third graph (blue) refers to resting without drinking
water, and the fourth graph (pink) refers to running without drinking water. Created with Labplot2.
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Figure 5. Labeled ordinary ECG graph. For reference.

QT interval

Clear differences in the ECG waveforms were observed between four conditions, highlighting the impact of
hydration and physical exertion on cardiac function. The analysis focused on the key components of the ECG wave-
form, namely the P-wave, QRS complex, and T-wave, to understand the physiological responses to hydration and

activity levels."?
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QRS Complex

The QRS complex, which represents ventricular depolarization, displayed clear variability between the hydrated and
dehydrated states, highlighting the impact of hydration on cardiac performance. In the first and second graph, the QRS
complexes were well-defined and consistent, indicating stable cardiac function.'? Even during running, the second
graph exhibited a regular QRS complex, suggesting that hydration allowed the heart to efficiently manage the in-
creased physical activity.'?

In contrast, the QRS complexes of the third and fourth graph displayed irregularities. Specifically, in the
fourth graph, the amplitude of the QRS complex showed greater variability, a likely indication of cardiovascular strain
due to dehydration.!* This increased variability suggests that the heart, while under physical exertion, struggled to
maintain effective circulation without adequate hydration, consistent with previous findings on the physiological ef-
fects of dehydration. '3

T-Wave

The T-wave, representing ventricular repolarization, also showed notable differences across the datasets. In the hy-
drated conditions, both the first and second graph demonstrated smooth and consistent T-waves, reflecting efficient
ventricular recovery.'® Even during the running phase in the second graph, the T-wave remained relatively stable,
indicating that hydration helped maintain normal repolarization processes despite the physical load.'®

However, subtle abnormalities were observed in the T-waves of the third and fourth graphs. In the third
graph, the T-wave appeared slightly flattened, which may signal early signs of electrolyte imbalance that are com-
monly associated with dehydration.!” These abnormalities were more pronounced in the fourth graph, where the T-
wave not only appeared flattened but also exhibited slight irregularities. This suggested that the cardiovascular strain
associated with dehydration was exacerbated by physical exertion, impairing the heart’s repolarization process.5

P-Wave

The P-wave, which reflects atrial depolarization, was generally stable across the subjects. However, in the dehydrated
subjects, minor reductions in the amplitude of the P-wave were observed. This may indicate reduced atrial efficiency,
a known effect of dehydration due to decreased blood volume and electrolyte imbalances.!® In contrast, hydrated
subjects exhibited more stable and consistent P-waves, suggesting that hydration supported normal atrial function
even under the increased demands of physical activity.!? 13

Heart Rate and R-R Interval

The heart rate, as inferred from the R-R interval (the time between consecutive R-peaks), revealed significant differ-
ences between the hydrated and dehydrated subjects. In the first graph, the R-R intervals were long and regular, cor-
responding to a stable and slower heart rate, indicative of normal resting conditions.® Similarly, the second graph
showed relatively consistent R-R intervals, even though the heart rate increased with physical exertion. This con-
sistency highlighted the stabilizing effect of hydration on cardiac performance under stress."

On the other hand, the third graph exhibited shorter and more variable R-R intervals, reflecting an elevated
heart rate even at rest, a typical response to dehydration."” In the fourth graph, this variability was even more pro-
nounced, with highly irregular R-R intervals and a significantly elevated heart rate. These findings align with the
known physiological effects of dehydration, where reduced blood volume forces the heart to work harder, leading to
increased heart rate variability and reduced efficiency.'®
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Comparative Patterns

In summary, the ECG waveforms of the hydrated subjects were smoother and more consistent, with well-defined QRS
complexes, T-waves, and P-waves. These findings suggest that adequate hydration helped maintain normal cardiac
function, even during physically demanding activities like running.'* Conversely, the ECG patterns in the dehydrated
subjects displayed significant irregularities, particularly in the QRS complex and T-wave, reflecting increased cardi-
ovascular stress.'* 1 The elevated heart rate variability and subtle changes in waveform morphology observed in these
subjects further illustrate the reduced efficiency of the heart under dehydrated conditions.'> These findings underscore
the critical role of hydration in maintaining normal cardiac function during physical activity and highlight the potential
for ECG monitoring to detect early signs of dehydration and cardiovascular strain.

Validations of ECG Analysis

The additional data collected from the biopatch further validated the observed differences in ECG between hydrated
and dehydrated states. Heart rate (HR) data showed that water intake leads to a lower HR during exercise and a quicker
recovery to baseline during rest periods, which was consistent with established insights on hydration’s role in main-
taining cardiovascular stability.!® Without water, HR was higher and more variable, indicative of cardiovascular strain
during dehydration.!” Additionally, the motion data showed comparable levels of physical activity across conditions,
ensuring that observed differences are primarily due to hydration rather than variations in exertion levels. Temperature
data further demonstrated that hydration supports more effective thermal regulation during exercise, with lower tem-
perature curves in hydrated states.?® These findings emphasized the importance of proper hydration for cardiovascular
and thermal stability during physical activity, helping to reduce the physiological strain of exercise.?
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Figure 6. Graphs of Temperature, Inertial Measurement Units, and Heart Rate throughout the two experiments.

Potential Applications

The distinct ECG patterns observed across the four datasets offer a robust foundation for applying machine learning
algorithms to predict a user’s hydration state and detect potential electrolyte imbalances. By leveraging key features
such as R-R intervals, QRS complex variability, and T-wave morphology, neural networks can be trained to assess
hydration levels based on real-time physiological signals.!? '© For example, the increased heart rate variability and
altered QRS complex observed in dehydrated subjects could serve as crucial predictors for identifying dehydration.'
16 Such machine learning models could be applied in various fields, including sports and fitness, where maintaining
proper hydration is vital to athletic performance and recovery.?® Occupational health in physically demanding envi-
ronments, such as construction or agriculture, could also benefit from real-time hydration monitoring to prevent de-
hydration-related injuries.?
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In addition to hydration monitoring, the ECG abnormalities seen in T-wave flattening and QRS complex
variability under dehydrated conditions open the door to detecting electrolyte imbalances such as hyperkalemia and
hypokalemia.”! Machine learning algorithms can be trained to recognize these subtle ECG markers, allowing for early
detection and intervention before severe symptoms arise.!? The integration of such predictive capabilities into weara-
ble devices, like the biopatch, could revolutionize healthcare by providing continuous, non-invasive monitoring of
electrolyte levels and cardiac health. These advancements have the potential to reduce the incidence of dangerous
cardiac events, particularly in at-risk populations, and support early diagnosis and intervention in real-world settings.?

Conclusion

The biopatch demonstrated its capability to monitor ECG signals and detect differences in heart function based on
hydration states. Analysis of data obtained in four various conditions showed distinct differences in the QRS complex,
T-wave, and heart rate variability. These results demonstrate the critical role that water plays in preserving circulatory
stability, with dehydrated conditions exhibiting more strain and variability. Additionally, validation of ECG analysis
using additional data confirmed the accuracy of the biopatch’s measurements. The research mainly concentrated on
data gathering, signal preprocessing, and ECG waveform analysis to distinguish between hydrated and dehydrated
conditions.

Finally, the incorporation of machine learning algorithms holds promise for further improving this technol-
ogy. Future uses could allow real-time hydration state prediction and early electrolyte imbalance diagnosis by training
models to recognize hydration-related patterns in ECG data. Personalized healthcare could be greatly enhanced by
this wearable technology and machine learning, especially in areas like sports, fitness, and occupational health.

Acknowledgments

I would like to thank Prof. Yeo and Dr. Kang for providing me with spaces to research and experiment, helping me
brainstorm, and giving invaluable insights into the topic. Their guidance throughout the experimental process allowed
me to push the boundaries of my research and think critically about each phase of the project.

References

1. Stoppa, M., & Chiolerio, A. (2014). Wearable Electronics and smart textiles: A critical review. Sensors,
14(7), 11957-11992. https://doi.org/10.3390/s140711957

2. Kim, Y., Kim, J., Chicas, R., Xiuhtecutli, N., Matthews, J., Zavanelli, N., Kwon, S., Lee, S. H., Hertzberg,
V.S., & Yeo, W. (2022). Soft wireless bioelectronics designed for real-time, Continuous Health
Monitoring of farmworkers. Advanced Healthcare Materials, 11(13).
https://doi.org/10.1002/adhm.202200170

3. Ban, S, Lee, Y.J., Kwon, S., Kim, Y.-S., Chang, J. W., Kim, J.-H., & Yeo, W.-H. (2023). Soft wireless
headband bioelectronics and electrooculography for persistent human—machine interfaces. ACS Applied
Electronic Materials, 5(2), 877-886. https://doi.org/10.1021/acsaelm.2c01436

4. Kang, T. W, Lee, J., Kwon, Y., Lee, Y. J., & Yeo, W. (2024). Recent progress in the development of

flexible wearable electrodes for electrocardiogram monitoring during exercise. Advanced NanoBiomed
Research, 4(8). https://doi.org/10.1002/anbr.202300169

ISSN: 2167-1907 www.JSR.org/hs 11


https://doi.org/10.3390/s140711957
https://doi.org/10.1002/adhm.202200170
https://doi.org/10.1021/acsaelm.2c01436
https://doi.org/10.1002/anbr.202300169

HIGH SCHOOL EDITION

@ Journal of Student Rescarch

10.

11.

12.

14.

15.

16.

17.

Volume 14 Issue 1 (2025)

Xu, S., Zhang, Y., Jia, L., Mathewson, K. E., Jang, K.-I., Kim, J., Fu, H., Huang, X., Chava, P., Wang, R.,
Bhole, S., Wang, L., Na, Y. J., Guan, Y., Flavin, M., Han, Z., Huang, Y., & Rogers, J. A. (2014). Soft
microfluidic assemblies of sensors, circuits, and radios for the skin. Science, 344(6179), 70-74.
https://doi.org/10.1126/science.1250169

Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical
Engineering, 32(3), 230-236.

Clifford, G. D., Azuaje, F., & McSharry, P. (2006). Advanced Methods and Tools for ECG Data Analysis.
Artech House.

Moody, G. B., & Mark, R. G. (2001). The impact of data preprocessing in the development of clinical ECG
analysis algorithms. IEEE Transactions on Biomedical Engineering, 48(5), 499-506.
https://doi.org/10.1109/10.915647

Inan, O. T., Migeotte, P. F., Park, K. S., Etemadi, M., Tavakolian, K., Casanella, R., & Di Rienzo, M.
(2015). Wearable Ballistocardiography and Seismocardiography: A Review. IEEE Journal of Biomedical
and Health Informatics, 19(4), 1414-1427. https://doi.org/10.1109/JBHI.2014.2361732

Aziz, S., Ahmed, S., & Alouini, M.-S. (2021). ECG-based machine-learning algorithms for Heartbeat
classification. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-97118-5

Acharya, U. R., Fujita, H., Lih, O. S., Adam, M., Tan, J. H., & Chua, C. K. (2017). Automated detection of
arrhythmias using different intervals of tachycardia ECG segments with convolutional neural networks.
Information Sciences, 405, 81-90. https://doi.org/10.1016/j.ins.2017.04.012

Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., Tison, G. H., Bourn, C., Turakhia, M. P., & Ng, A. Y.
(2019). Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a
deep neural network. Nature Medicine, 25(1), 65—69. https://doi.org/10.1038/541591-018-0268-3

. Casa, D. J., Clarkson, P. M., & Roberts, W. O. (2005). Exercise-Induced Heat Stress and Cardiovascular

Strain: Importance of Hydration. American Journal of Sports Medicine, 33(5), 1123-1130.
https://doi.org/10.1177/0363546504274125

Montain, S. J., & Coyle, E. F. (1992). Influence of graded dehydration on hyperthermia and cardiovascular
drift during exercise. Journal of Applied Physiology, 73(4), 1340-1350.
https://doi.org/10.1152/jappl.1992.73.4.1340

Casa, D. J., Armstrong, L. E., Hillman, S. K., Montain, S. J., Reiff, R. V., Rich, B. S., & Stone, J. A.
(2000). National Athletic Trainers' Association Position Statement: Fluid replacement for athletes. Journal
of Athletic Training, 35(2), 212-224. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1323420/

Vargas, N. T., & Marino, F. E. (2016). Superior heart rate variability and lower ventilatory response to
exercise in athletes: Associations with hydration status and temperature regulation. Physiology & Behavior,
165, 276-283. https://doi.org/10.1016/j.physbeh.2016.08.008

Noakes, T. D. (2003). Fluid replacement during exercise. Exercise and Sport Sciences Reviews, 31(2), 130-
135. https://doi.org/10.1097/00003677-200304000-00010

ISSN: 2167-1907 www.JSR.org/hs 12


https://doi.org/10.1126/science.1250169
https://doi.org/10.1109/10.915647
https://doi.org/10.1109/JBHI.2014.2361732
https://doi.org/10.1038/s41598-021-97118-5
https://doi.org/10.1016/j.ins.2017.04.012
https://doi.org/10.1038/s41591-018-0268-3
https://doi.org/10.1177/0363546504274125
https://doi.org/10.1152/jappl.1992.73.4.1340
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1323420/
https://doi.org/10.1016/j.physbeh.2016.08.008
https://doi.org/10.1097/00003677-200304000-00010

HIGH ECHOOLBIITION Volume 14 Issue 1 (2025)

@ Journal of Student Rescarch

18.

19.

20.

21.

22.

Armstrong, L. E. (2007). Assessing hydration status: The elusive gold standard. Journal of the American
College of Nutrition, 26(Suppl 5), 575S-584S. https://doi.org/10.1080/07315724.2007.10719661

Almeida, M., Bottino, A., Ramos, P., & Araujo, C. G. (2019). Measuring heart rate during exercise: From
artery palpation to monitors and apps. International Journal of Cardiovascular Sciences, 32(4), 396-407.
https://doi.org/10.5935/2359-4802.20190061

Savvides, A., Giannaki, C. D., Vlahoyiannis, A., Stavrinou, P. S., & Aphamis, G. (2020). Effects of
Dehydration on Archery Performance, Subjective Feelings and Heart Rate during a Competition
Simulation. Journal of Functional Morphology and Kinesiology, 5(3), 67.
https://doi.org/10.3390/jfmk 5030067

Shephard, R. J. (2007). American College of Sports Medicine Position Stand: Exercise and Fluid
Replacement. Yearbook of Sports Medicine, 2007, 254-255. https://doi.org/10.1016/s0162-
0908(08)70206-x

Weiner, 1. D., & Wingo, C. S. (1998). Hyperkalemia. Journal of the American Society of Nephrology, 9(8),
1535-1543. https://doi.org/10.1681/asn.v981535

ISSN: 2167-1907 www.JSR.org/hs 13


https://doi.org/10.1080/07315724.2007.10719661
https://doi.org/10.5935/2359-4802.20190061
https://doi.org/10.3390/jfmk5030067
https://doi.org/10.1016/s0162-0908(08)70206-x
https://doi.org/10.1016/s0162-0908(08)70206-x
https://doi.org/10.1681/asn.v981535

	P-Wave
	Comparative Patterns



