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ABSTRACT

Predicting intrinsic clearance (Clint) is essential for understanding the pharmacokinetics of pesticides, as it directly
influences dosing regimens and the overall behavior of chemicals within biological systems. This study aimed to
develop and validate a hybrid machine learning model to accurately predict Clint for various pesticide categories,
utilizing publicly available data from the U.S. Environmental Protection Agency's National Center for Computational
Toxicology (EPA NCCT) High-Throughput Toxicokinetics (HTTK) dataset. Molecular descriptors were calculated
using the PaDEL software, and relevant descriptors were selected using the k-nearest neighbors (kNN) algorithm
based on their correlation with Clint values. Three machine learning models—Random Forest (RF), XGBoost, and
Artificial Neural Networks (ANN)—were trained and evaluated across four pesticide categories: Total, Herbicides,
Insecticides, and Fungicides. The Random Forest model achieved the highest R? value of 0.967 for Herbicides, while
XGBoost outperformed the other models for Insecticides (R>=0.806) and Fungicides (R?>=0.840), as well as the Total
category (R?>=0.744). Despite these promising results, the study faced limitations such as the treatment of outliers, the
presence of excessive zeros in the dataset, and small sample sizes (e.g., n=20 for Herbicides), which could impact the
accuracy of the models. The hybrid model, by selecting the optimal algorithm based on input chemical structures,
demonstrates significant potential in predicting Clint for new chemicals, offering a rapid and reliable alternative to
traditional in vivo methods. These findings contribute to the field of computational toxicology by enhancing the pre-
dictive capabilities of in silico models and supporting the development of safer chemical compounds.

Introduction

Intrinsic clearance (Clint) is a critical pharmacokinetic parameter that reflects the liver's ability to metabolize drugs
independent of blood flow. Accurate estimation of Clint is essential for predicting a drug's clearance from the body,
determining appropriate dosing regimens, and understanding the pharmacokinetic behavior of compounds (Obach,
1999). Traditional approaches to estimating Clint have relied heavily on in vivo studies using animal models. While
these studies provide valuable data, they are costly, time-consuming, and raise ethical concerns (Brown et al., 2007).
Additionally, the differences in drug metabolism between animals and humans limit the applicability of these methods,
necessitating the development of alternative approaches (Zhang et al., 2010).

Recent advancements in computational methods have led to the emergence of in silico models, which aim to
reduce or replace animal testing by utilizing computational tools, including machine learning (ML) algorithms, to
predict intrinsic clearance based on molecular descriptors and other biochemical properties (van de Waterbeemd &
Gifford, 2003). In silico models offer significant advantages, including faster predictions, reduced costs, and the elim-
ination of ethical concerns associated with animal testing (Patilea-Vrana & Unadkat, 2018). Moreover, these models
can provide insights into drug metabolism that are more directly relevant to human physiology (Algahtani et al., 2013).
However, developing reliable in silico models for Clint prediction poses several challenges. A major issue is the
selection of relevant molecular descriptors from a vast pool of potential features. The performance of these models
depends heavily on the quality and relevance of the input data, which must be carefully curated to avoid issues such
as outliers, non-parametric distributions, and excessive zero values (Gleeson et al., 2011). Machine learning
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techniques, with their ability to manage complex datasets and identify patterns, are particularly well-suited for ad-
dressing these challenges (Patilea-Vrana & Unadkat, 2018). Given the diverse strengths of different ML algorithms,
it is important to evaluate multiple techniques to identify the most effective method for Clint prediction. This study
focused on three prominent ML methods: Random Forest (RF), XGBoost, and Artificial Neural Networks (ANN). By
comparing the performance of these models across different categories of pesticides, Total, Herbicides, Insecticides,
and Fungicides, this research aimed to determine the best-performing algorithm for each category. Furthermore, the
concept of a hybrid model is explored, which integrates the predictions from the top-performing models to enhance
overall predictive accuracy (Jones et al., 2013).

The primary objective of this study was to develop and validate in silico models for predicting intrinsic
clearance using a combination of ML techniques. By systematically comparing RF, XGBoost, and ANN, and by ex-
ploring the potential of a hybrid model, this research aimed to contribute to the field of pharmacokinetics by providing
areliable, efficient, and ethical alternative to traditional methods. The outcomes of this study are expected to advance
the development of safer and more effective pharmaceutical compounds, offering significant benefits to both scientific
research and practical drug development (Obach, 1999).

Methodology

Training Data: EPA Rat Intrinsic Clearance In Vitro Study Data

The study utilized intrinsic clearance (Clint) data from the U.S. Environmental Protection Agency (EPA) National
Center for Computational Toxicology’s High-Throughput Toxicokinetics (HTTK) training dataset. This dataset pro-
vides a comprehensive analysis of the intrinsic clearance of various compounds in rat models, offering valuable in-
sights into their metabolic characteristics. The training dataset includes detailed information such as chemical classi-
fications, molecular formulas, and key pharmacokinetic parameters, including intrinsic clearance. This dataset serves
as the foundation for developing computational models to predict how chemicals are metabolized in vivo.

Calculation of Molecular Descriptors Using PaADEL Modeling and kNN

To generate the molecular descriptors needed for model development, the PaDEL software was used. PaDEL is an
open-source tool capable of calculating a wide range of molecular descriptors and fingerprints from chemical struc-
tures. These descriptors quantify numerous structural properties of molecules, such as bond interactions, atom counts,
and molecular topology, providing essential inputs for the machine learning models. The primary input required for
PaDEL is the chemical structure, typically provided in the form of a SMILES (Simplified Molecular Input Line Entry
System) code or other chemical structure formats like SDF (Structure-Data File) or MOL files. These inputs allow
PaDEL to compute various descriptors, including bond interactions, atom counts, and molecular topology, which are
essential for feeding into the machine learning models for predicting intrinsic clearance. Once the molecular de-
scriptors were calculated, they were combined with the intrinsic clearance (Clint) data, where the Clint values served
as the dependent variable (y), and the calculated descriptors formed the independent variable group (X). This com-
bined dataset was then used as the input for the machine learning models to predict intrinsic clearance.

Following this, the k-nearest neighbors (kNN) algorithm was employed to further refine the dataset. The kNN
algorithm classifies data points based on the majority class of their nearest neighbors in the descriptor space. Addi-
tionally, KNN ranks these descriptors by examining their influence on the classification of neighbors, allowing for the
identification of the most relevant descriptors. This process significantly narrowed down the list from the original
1,444 molecular descriptors, focusing on those most likely to contribute to accurate predictions.

ISSN: 2167-1907 www.JSR.org/hs 2



HIGH SCHOOL EDITION

@ Journal of Student Rescarch

Volume 13 Issue 4 (2024)

The kNN algorithm operates based on the principle of similarity, where the class of a given data point is
determined by the majority class among its k nearest neighbors. The classification decision is made according to the
equation:

1
fE@ =7 > o

iEN,(x)

Where:
®  f{x) is the predicted output for the input xxx,
e Ni(x) denotes the set of the k nearest neighbors of x,
ey, is the observed class or value of the neighbor.

Machine Learning Techniques: Random Forest, XGBoost, and ANN

In this study, three machine learning models were employed: Random Forest (RF), XGBoost, and Artificial Neural
Networks (ANN). Each model was chosen for its unique strengths and applicability to different aspects of the dataset:

Random Forest (RF)
Random Forest is an ensemble learning method that constructs multiple decision trees during training and aggregates
their predictions to produce a final output. The algorithm works by selecting a random subset of features for each tree,
thus creating a diverse set of trees and reducing overfitting. The final prediction is made by averaging the predictions
of all trees (in the case of regression) or by majority voting (in the case of classification).

The prediction of a Random Forest model for a regression problem is given by:

1 N
yr =1 T
n=1

Where:
e y”is the predicted value,
e N is the number of trees in the forest,
e T,(x) is the prediction of the n-th tree for input x.

XGBoost
XGBoost is a powerful gradient boosting algorithm that builds models sequentially, with each new model correcting
the errors of its predecessor. This iterative process leads to highly accurate and efficient predictions. XGBoost opti-
mizes a specific objective function and applies regularization to reduce overfitting, making it a robust choice for both
regression and classification tasks.

The prediction for an input xxx in XGBoost is given by:

k
yh ka(x), fi €p

k=1

Where:
e yMis the predicted value,
e  kis the number of trees,
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e  fi(x) is the prediction of the k-th tree,
e p denotes the space of regression trees.

The objective function L optimized during training includes both a loss function and a regularization term:

L@) = Y 10, y™) + ) 0
i k=1

Where:
e [is the loss function (e.g., mean squared error),
o Q(fy) is the regularization term for tree k.

Artificial Neural Networks (ANN)
ANN is a deep learning approach that simulates the neural networks of the human brain, passing data through multiple
layers of interconnected nodes (neurons). Each layer captures different aspects of the data, allowing the network to
learn complex patterns. The model adjusts its internal connections (weights and biases) during training to minimize
the error between predicted and observed values.

The output of a neuron in a neural network is computed as:

n(l_l)
@ _ o (-1 o
a =0 Z Wy a; + bj
i=1

Where:

aj(l) is the activation of the j-th neuron in layer /,

e (0 is the activation function (e.g., ReLU, sigmoid),
e
. bj(l) is the bias term for neuron j in layer /.

is the weight connecting neuron i in layer /-1 to neuron j in layer /,

Model Validation and Hybrid Machine Learning

The performance of each model was evaluated using the coefficient of determination (R?) from simple multiple linear
regression between observed and predicted intrinsic clearance values. The R? value serves as a key indicator of how
well the model's predictions match the observed data, with higher R? values indicating better model performance. This
approach provided a straightforward and effective means of assessing the accuracy of the models across different
pesticide categories.

To optimize predictive accuracy, a hybrid model approach was explored. The hybrid model was constructed
by selecting the best-performing model for each pesticide category based on its R? value. The predictions from these
models were then integrated to create a combined output that leveraged the strengths of each individual model. This
approach was particularly effective in enhancing overall predictive accuracy by ensuring that the most suitable model
was applied to each specific category.

This hybrid model approach is especially advantageous for predicting intrinsic clearance (Clint) for newly
discovered chemicals. Once the molecular descriptors are generated from the chemical structure, provided as a
SMILES (Simplified Molecular Input Line Entry System) code, the hybrid model can dynamically select and apply
the most accurate algorithm for the corresponding category. This ensures that Clint predictions are as reliable and
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precise as possible, making this approach a powerful tool for rapid evaluation in chemical discovery and safety as-
sessments.

Results

Analysis of Training Data and Parameter Selection Using kNN

Figure 1 illustrates the top 10 molecular descriptors for each pesticide category—Total, Herbicides, Insecticides, and
Fungicides—ranked by their correlation with intrinsic clearance (Clint) values, as determined by the k-nearest neigh-
bors (kNN) algorithm. These rankings showcase the descriptors most strongly associated with Clint within each cate-
gory. While Figure 1 highlights the top 10 descriptors based on their ranking, it's important to note that in the subse-
quent machine learning models, only descriptors with an R? value greater than 0.5 were selected as denoted in Table
1. This careful selection process ensures that the models focus on the most predictive molecular features, thereby
enhancing the accuracy of Clint predictions (Obach, 1999; Saeed et al., 2017).

kNN-Generated Correlation Ranking for Total kNN-Generated Correlation Ranking for Herbicides
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Figure 1. kNN-Generated Correlation Ranking for Total (top left), Herbicides (top right), Fungicides (bottom left)
and Insecticides (bottom right).

Table 1. Selected Descriptors (R?>>0.5) for Each Pesticide Category Based on kNN Analysis

Pesticide Category Selected Descriptors R? Value Range

Total minHBint4, maxHsssNHp, minHsssNHp, SHsssNHp, nHsssNHp 0.580 - 0.758

Herbicides minHBint5, SHCsatu, maxHBint3, SHBint3, minHBint3, nHCsatu, 0.837 - 0.960
minHtCH, SHtCH, maxHtCH, C2SP1

Insecticides SdS, maxdS, mindS, nHeteroRing, ndS 0.538 - 0.557
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‘ Fungicides

‘ MDEO-11, minsOm, maxsOm, SsOm, MDEN-33

0.838-0.845 |

Explanation of High Correlations for Each Pesticide Group

The selected molecular descriptors exhibited strong correlations with intrinsic clearance (Clint) values across the dif-
ferent pesticide categories—Total, Herbicides, Insecticides, and Fungicides. These correlations can be explained by
the specific roles that these descriptors play in the metabolic processes affecting Clint. Below is a detailed analysis of

why these descriptors are significant for each pesticide group. Table 2 provides a detailed overview of the molecular
descriptors that were found to have the highest correlations with intrinsic clearance (Clint) across the four pesticide
categories. The table includes both the descriptor names and their respective definitions, offering insights into why

these specific molecular features are significant in predicting Clint for each group.

Table 2. Description of molecular descriptors in Top 10 Ranks.

nected by a single bond in a molecule.

Total Herbicides
minHBint The rr}inirr}um vz.ilue of hydrogen bond in- minHBintS The rr.linimu.m vz'ilue of hydrogen bond interac-
teractions involving four atoms. tions involving five atoms.
The maximum value of three single-bonded
R vatu . ne ) The sum of the contributions from all carbon
maxHsssNHp hydrogens attached to a nitrogen with alone | SHCsatu . .
pair atoms with single bonds only in the molecule
ir.
The minimum value of the three single-
Th i lue of hyd bond interac-
minHsssNHp bonded hydrogens attached to a nitrogen | maxHBint3 | | err.laxlmlilm vatue ofydrogen bonc nterac
. . tions involving three atoms.
with a lone pair.
The sum of the values for three single-
The sum of all hydrogen bond interactions in-
SHsssNHp bonded hydrogens attached to a nitrogen | SHBint3 .u yarog ! tonst
. . volving three atoms.
with a lone pair.
The count of occurrences of three single-
The mini lue of hyd bond interac-
nHsssNHp bonded hydrogens attached to a nitrogen | minHBint3 . © n-nmmu.m vatte of hycrogen bond wmterac
. . tions involving three atoms.
with a lone pair.
The minimum value of a carbon atom at- . .
. : The count of carbon atoms with only single
minssCH2 tached to two hydrogens and two single | nHCsatu .
bonds in the molecule.
bonds.
The maximum value of a carbon atom at- ..
) . The minimum value of hydrogen atoms at-
maxssCH2 tached to two hydrogens and two single | minHtCH ) .
tached to a carbon atoms with a triple bond.
bonds.
maxHBintd The rr}axiglum Vfllue of hydrogen bond in- SHICH The sum of contributions f'rom flll hydrogen at-
teractions involving four atoms. oms attached to carbons with triple bonds.
minsOm The ‘n?inimum value O.f oxygen atoms in a maxHtCH The maximum value of h.ydrogt.en atoms at-
specific molecular environment. tached to a carbon atoms with a triple bond.
The maximum value of oxygen atoms in a The count of carbon atoms with two attached
maxsOm o . C2SPI1 . .
specific molecular environment. single bonds and one attached triple bond.
Insecticides Fungicides
SdS The sum of all sulfur-sulfur single bonds in MDEO-11 The mean distance bétw.een oxygen atoms sep-
a molecule. arated by 11 bonds within the molecule.
The maximum value of any sulfur atom . The minimum value of oxygen atoms in a spe-
maxdS . . minsOm . .
connected by a single bond in a molecule. cific molecular environment.
mindS The minimum value of any sulfur atom con- maxsOm The maximum value of oxygen atoms in a spe-

cific molecular environment.
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The number of non-carbon atoms present in The sum of contributions from oxygen atoms in

nHeteroRing . Lo SsOm . .
a ring structure within the molecule. a specific molecular environment.

ndS The count of sulfur atoms connected by a MDEN-33 The mean distance bet‘we.en nitrogen atoms
single bond in a molecule. separated by 33 bonds within the molecule.

The autocorrelation of the topological
ATSC2V structure at lag 2 using van der Waals vol- | nsOm
umes as weights.

The count of oxygen atoms in a specific molec-
ular environment.

The maximum value of the Burden eigen-
SpMax2_Bhp value for a 2-bond length path in the mole- | SHBint6
cule, focusing on polar hydrogens.

The sum of all hydrogen bond interactions in-
volving six atoms.

. The minimum value of NH2 or NH in the . . The minimum value of hydrogen bond interac-
minaaN minHBint6 K K K .
molecule. tions involving six atoms.

Th t lati f the topological
The maximum value of NH2 or NH in the © average autocorreration of the topologica

maxaaN AATS6s structure at lag 6 using atom-level van der
molecule. .
Waals surface areas as weights.
The first component of the VAMP de- The centered autocorrelation of the topological
VP-1 scriptor, related to the molecular volume | ATSC6s structure at lag 6 using atom-level van der
and shape. Waals surface areas as weights.

Total

For the Total category, the descriptors minHBint4, maxHsssNHp, minHsssNHp, SHsssNHp, and nHsssNHp are re-
lated to hydrogen bonding, particularly involving nitrogen atoms with lone pairs. Hydrogen bonding is crucial for the
interaction between compounds and metabolic enzymes, such as cytochrome P450, which significantly influences a
molecule’s metabolism and clearance rate (Lewis, 2002; Obach, 1999). The descriptors minssCH2 and maxssCH2
reflect specific carbon environments that may impact the compound's reactivity and interaction with these enzymes
(Smith et al., 1996). Additionally, minsOm and maxsOm quantify the presence and environment of oxygen atoms,
which are critical for oxidation reactions during metabolism, further affecting Clint (van de Waterbeemd & Gifford,
2003).

Herbicides

In the Herbicides category, descriptors such as minHBint5, maxHBint3, SHBint3, and minHBint3 focus on hydrogen
bond interactions involving three or five atoms. The strength and number of these hydrogen bonds directly affect how
herbicides are metabolized, thus influencing their clearance rates (Obach, 1999; Gleeson, 2008). The descriptors
SHCsatu and nHCsatu are related to the saturation of carbon atoms, which affects metabolic stability and oxidation
processes in herbicides (Hansch et al., 2005). Descriptors like minHtCH, maxHtCH, and SHtCH involve hydrogen
atoms attached to carbons with triple bonds, which can impact the molecule’s rigidity and susceptibility to metabolism,
thereby altering its clearance (Smith et al., 1996). C2SP1 represents specific carbon bonding environments that influ-

ence the molecule's overall shape and electron distribution, critical for interaction with metabolic enzymes (Klopman
& Chakravarti, 2003).

Insecticides

For Insecticides, descriptors SdS, maxdS, mindS, and ndS are related to sulfur-sulfur single bonds, significant because
sulfur atoms are key sites for oxidation or reduction during metabolism (Lewis, 2002; Kirchmair et al., 2012). The
nHeteroRing descriptor counts non-carbon atoms in ring structures, with heteroatoms like oxygen, nitrogen, or sulfur
altering the molecule's reactivity and metabolism (Gleeson, 2008). ATSC2V and SpMax2_Bhp involve topological
structure and autocorrelation using van der Waals volumes, impacting how the molecule fits into the active site of
enzymes (Ertl et al., 2000). Descriptors minaaN and maxaaN reflect the presence of NH2 or NH groups, common sites
for metabolic reactions like deamination, which directly influence Clint (Smith et al., 1996). VP-1 relates to molecular
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volume and shape, factors crucial for how well a molecule is processed by enzymes, affecting its clearance (Kirchmair
et al., 2012).

Fungicides

In the Fungicides category, MDEO-11 and MDEN-33 descriptors reflect the mean distance between oxygen or nitro-
gen atoms, which influence the molecule's 3D structure and its interaction with metabolic enzymes (Kirchmair et al.,
2012). Descriptors like minsOm, maxsOm, nsOm, and SsOm focus on oxygen atoms' environments, critical for met-
abolic processes such as oxidation (van de Waterbeemd & Gifford, 2003). SHBint6 and minHBint6 involve hydrogen
bonds with six atoms, indicating complex interactions affecting how the molecule is metabolized (Lewis, 2002). Fi-
nally, AATS6s and ATSC6s describe autocorrelation of topological structures at lag 6, analyzing the molecule's shape
and electron distribution, which influence its interactions with enzymes (Ertl et al., 2000).

Machine Learning Results

Three machine learning models—Random Forest (RF), XGBoost, and Artificial Neural Networks (ANN)—were
trained and evaluated across the four pesticide categories: Total, Herbicides, Insecticides, and Fungicides. The perfor-
mance of these models was assessed using the coefficient of determination (R?), which indicates how well the model's
predictions match the observed intrinsic clearance values.

Table 3 summarizes the R? values for each model across the different pesticide categories. The Random
Forest model achieved the highest R? value for the Herbicides category, while the XGBoost model outperformed the
others in the Total, Insecticides, and Fungicides categories.

Table 3. Correlation coefficient (R?) to evaluate model performance of the three models.

R? (observed vs. predicted)
Model Total (N=66) Herbicides (N=20) Insecticides Fungicides (N=22)
(N=24)
Random Forest 0.533 0.967 0.679 0.742
XGBoost 0.744 0.705 0.806 0.840
ANN 0.098 0.791 0.303 0.372

Hybrid Machine Learning Model

To optimize predictive accuracy, a hybrid model was developed by selecting the best-performing machine learning
model for each pesticide category based on the R? values. As shown in Table 4, the hybrid model dynamically chooses
the model that performed the best for each individual prediction task within each category. This approach ensures that
the strongest predictive algorithm is applied to each new data point, thereby enhancing overall predictive accuracy
across the pesticide categories. The use of hybrid models, which leverage the strengths of different algorithms to
improve prediction outcomes, is well-supported in the literature (Zhang & Ma, 2012; Kourou et al., 2015).

Table 4. Multiple Linear Equation for Each Machine Learning Model with the Highest R
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Pesticide Category Selected Model R?
Total XGBoost 0.744
Herbicides Random Forest 0.967
Insecticides XGBoost 0.806
Fungicides XGBoost 0.840
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This approach can be particularly powerful when predicting intrinsic clearance (Clint) for a newly discovered
chemical. After receiving the chemical structure in the form of a SMILES (Simplified Molecular Input Line Entry
System) code, molecular descriptors are calculated, and the hybrid model then selects the best-performing model for
the corresponding class or category to predict Clint. This streamlined process allows for rapid and accurate predictions
of Clint, facilitating more efficient drug discovery and chemical safety evaluations.

Conclusion

This study successfully demonstrated the application of hybrid machine learning models to predict intrinsic clearance
(Clint) for various pesticide categories, leveraging the strengths of different algorithms—Random Forest, XGBoost,
and Artificial Neural Networks (ANN). By selecting the best-performing model for each pesticide category, the hybrid
model approach provided a significant enhancement in predictive accuracy, particularly when compared to individual
models.

The predictive accuracy varied across the different pesticide categories. For the Herbicides category, the
Random Forest model achieved the highest performance with an R? value of 0.967, while for Insecticides and Fungi-
cides, XGBoost was the best-performing model with R? values of 0.806 and 0.840, respectively. In the Total category,
XGBoost also outperformed the other models, achieving an R? value of 0.744. The overall accuracy range for these
models spanned from 0.098 (for ANN in the Total category) to 0.967 (for Random Forest in the Herbicides category).

However, the study also faced significant challenges, particularly in the treatment of outliers and the handling
of datasets with an excessive number of zeros. These issues can distort model performance, leading to reduced accu-
racy and biased predictions. Outlier treatment required careful consideration, as outliers can disproportionately influ-
ence model training, especially in smaller datasets. Similarly, the presence of numerous zeros in the dataset, which
might represent undetectable or negligible Clint values, posed difficulties in model fitting and required specific pre-
processing strategies to mitigate their impact on model performance.

Despite these challenges, the hybrid model's ability to dynamically select the optimal predictive algorithm

based on the input chemical structure makes it a powerful tool for rapid and accurate prediction of Clint for newly
discovered chemicals. By providing a streamlined workflow—from receiving a chemical structure in the form of a
SMILES code, to calculating molecular descriptors, to predicting Clint—this approach has the potential to signifi-
cantly accelerate the drug discovery process and enhance chemical safety evaluations.
The study also highlighted the importance of molecular descriptors in predicting Clint, with key descriptors related to
hydrogen bonding, molecular topology, and specific atom environments showing strong correlations with metabolic
clearance rates across different pesticide classes. These findings underscore the value of using detailed molecular
descriptors in combination with advanced machine learning techniques to improve the prediction of pharmacokinetic
parameters.

The integration of in silico models, such as the one developed in this study, offers a promising alternative to
traditional in vivo methods, reducing reliance on animal testing while providing more efficient and cost-effective ways
to assess the metabolic clearance of chemicals. As machine learning and computational chemistry continue to evolve,
further refinement and validation of these models will undoubtedly enhance their predictive power and broaden their
applicability across different chemical and pharmacological domains.

Limitations

The study faced significant limitations, including the presence of outliers that could skew model predictions and re-
duce accuracy, particularly in smaller datasets. Additionally, the excessive number of zero values in the intrinsic
clearance (Clint) measurements posed challenges for model training, potentially leading to less reliable predictions.
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Moreover, the limited data availability in certain pesticide categories, such as herbicides with only 20 samples, con-
strained the models' ability to generalize and perform robustly, especially in models like Random Forest that typically
require larger datasets to achieve optimal performance.
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