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ABSTRACT 

Predicting intrinsic clearance (Clint) is essential for understanding the pharmacokinetics of pesticides, as it directly 
influences dosing regimens and the overall behavior of chemicals within biological systems. This study aimed to 
develop and validate a hybrid machine learning model to accurately predict Clint for various pesticide categories, 
utilizing publicly available data from the U.S. Environmental Protection Agency's National Center for Computational 
Toxicology (EPA NCCT) High-Throughput Toxicokinetics (HTTK) dataset. Molecular descriptors were calculated 
using the PaDEL software, and relevant descriptors were selected using the k-nearest neighbors (kNN) algorithm 
based on their correlation with Clint values. Three machine learning models—Random Forest (RF), XGBoost, and 
Artificial Neural Networks (ANN)—were trained and evaluated across four pesticide categories: Total, Herbicides, 
Insecticides, and Fungicides. The Random Forest model achieved the highest R2 value of 0.967 for Herbicides, while 
XGBoost outperformed the other models for Insecticides (R2=0.806) and Fungicides (R2=0.840), as well as the Total 
category (R2=0.744). Despite these promising results, the study faced limitations such as the treatment of outliers, the 
presence of excessive zeros in the dataset, and small sample sizes (e.g., n=20 for Herbicides), which could impact the 
accuracy of the models. The hybrid model, by selecting the optimal algorithm based on input chemical structures, 
demonstrates significant potential in predicting Clint for new chemicals, offering a rapid and reliable alternative to 
traditional in vivo methods. These findings contribute to the field of computational toxicology by enhancing the pre-
dictive capabilities of in silico models and supporting the development of safer chemical compounds. 

Introduction 

Intrinsic clearance (Clint) is a critical pharmacokinetic parameter that reflects the liver's ability to metabolize drugs 
independent of blood flow. Accurate estimation of Clint is essential for predicting a drug's clearance from the body, 
determining appropriate dosing regimens, and understanding the pharmacokinetic behavior of compounds (Obach, 
1999). Traditional approaches to estimating Clint have relied heavily on in vivo studies using animal models. While 
these studies provide valuable data, they are costly, time-consuming, and raise ethical concerns (Brown et al., 2007). 
Additionally, the differences in drug metabolism between animals and humans limit the applicability of these methods, 
necessitating the development of alternative approaches (Zhang et al., 2010). 

Recent advancements in computational methods have led to the emergence of in silico models, which aim to 
reduce or replace animal testing by utilizing computational tools, including machine learning (ML) algorithms, to 
predict intrinsic clearance based on molecular descriptors and other biochemical properties (van de Waterbeemd & 
Gifford, 2003). In silico models offer significant advantages, including faster predictions, reduced costs, and the elim-
ination of ethical concerns associated with animal testing (Patilea-Vrana & Unadkat, 2018). Moreover, these models 
can provide insights into drug metabolism that are more directly relevant to human physiology (Alqahtani et al., 2013). 
However, developing reliable in silico models for Clint prediction poses several challenges. A major issue is the 
selection of relevant molecular descriptors from a vast pool of potential features. The performance of these models 
depends heavily on the quality and relevance of the input data, which must be carefully curated to avoid issues such 
as outliers, non-parametric distributions, and excessive zero values (Gleeson et al., 2011). Machine learning 
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techniques, with their ability to manage complex datasets and identify patterns, are particularly well-suited for ad-
dressing these challenges (Patilea-Vrana & Unadkat, 2018). Given the diverse strengths of different ML algorithms, 
it is important to evaluate multiple techniques to identify the most effective method for Clint prediction. This study 
focused on three prominent ML methods: Random Forest (RF), XGBoost, and Artificial Neural Networks (ANN). By 
comparing the performance of these models across different categories of pesticides, Total, Herbicides, Insecticides, 
and Fungicides, this research aimed to determine the best-performing algorithm for each category. Furthermore, the 
concept of a hybrid model is explored, which integrates the predictions from the top-performing models to enhance 
overall predictive accuracy (Jones et al., 2013). 

The primary objective of this study was to develop and validate in silico models for predicting intrinsic 
clearance using a combination of ML techniques. By systematically comparing RF, XGBoost, and ANN, and by ex-
ploring the potential of a hybrid model, this research aimed to contribute to the field of pharmacokinetics by providing 
a reliable, efficient, and ethical alternative to traditional methods. The outcomes of this study are expected to advance 
the development of safer and more effective pharmaceutical compounds, offering significant benefits to both scientific 
research and practical drug development (Obach, 1999). 

 

Methodology 
 
Training Data: EPA Rat Intrinsic Clearance In Vitro Study Data 
 
The study utilized intrinsic clearance (Clint) data from the U.S. Environmental Protection Agency (EPA) National 
Center for Computational Toxicology’s High-Throughput Toxicokinetics (HTTK) training dataset. This dataset pro-
vides a comprehensive analysis of the intrinsic clearance of various compounds in rat models, offering valuable in-
sights into their metabolic characteristics. The training dataset includes detailed information such as chemical classi-
fications, molecular formulas, and key pharmacokinetic parameters, including intrinsic clearance. This dataset serves 
as the foundation for developing computational models to predict how chemicals are metabolized in vivo.  
 
Calculation of Molecular Descriptors Using PaDEL Modeling and kNN 
 
To generate the molecular descriptors needed for model development, the PaDEL software was used. PaDEL is an 
open-source tool capable of calculating a wide range of molecular descriptors and fingerprints from chemical struc-
tures. These descriptors quantify numerous structural properties of molecules, such as bond interactions, atom counts, 
and molecular topology, providing essential inputs for the machine learning models. The primary input required for 
PaDEL is the chemical structure, typically provided in the form of a SMILES (Simplified Molecular Input Line Entry 
System) code or other chemical structure formats like SDF (Structure-Data File) or MOL files. These inputs allow 
PaDEL to compute various descriptors, including bond interactions, atom counts, and molecular topology, which are 
essential for feeding into the machine learning models for predicting intrinsic clearance. Once the molecular de-
scriptors were calculated, they were combined with the intrinsic clearance (Clint) data, where the Clint values served 
as the dependent variable (y), and the calculated descriptors formed the independent variable group (X). This com-
bined dataset was then used as the input for the machine learning models to predict intrinsic clearance. 

Following this, the k-nearest neighbors (kNN) algorithm was employed to further refine the dataset. The kNN 
algorithm classifies data points based on the majority class of their nearest neighbors in the descriptor space. Addi-
tionally, kNN ranks these descriptors by examining their influence on the classification of neighbors, allowing for the 
identification of the most relevant descriptors. This process significantly narrowed down the list from the original 
1,444 molecular descriptors, focusing on those most likely to contribute to accurate predictions. 
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The kNN algorithm operates based on the principle of similarity, where the class of a given data point is 
determined by the majority class among its k nearest neighbors. The classification decision is made according to the 
equation: 
 

𝑓𝑓(𝑥𝑥) =
1
𝑘𝑘

� (yi)
𝑖𝑖∈𝑁𝑁,(𝑥𝑥)

 

 
Where: 

• f(x) is the predicted output for the input xxx, 
• Nk(x) denotes the set of the k nearest neighbors of x, 
• yi is the observed class or value of the neighbor. 

 
Machine Learning Techniques: Random Forest, XGBoost, and ANN 
 
In this study, three machine learning models were employed: Random Forest (RF), XGBoost, and Artificial Neural 
Networks (ANN). Each model was chosen for its unique strengths and applicability to different aspects of the dataset: 
 
Random Forest (RF) 
Random Forest is an ensemble learning method that constructs multiple decision trees during training and aggregates 
their predictions to produce a final output. The algorithm works by selecting a random subset of features for each tree, 
thus creating a diverse set of trees and reducing overfitting. The final prediction is made by averaging the predictions 
of all trees (in the case of regression) or by majority voting (in the case of classification). 

The prediction of a Random Forest model for a regression problem is given by: 
 

𝑦𝑦^ =
1
𝑁𝑁
�𝑇𝑇𝑛𝑛(𝑥𝑥)
𝑁𝑁

𝑛𝑛=1

 

 
Where: 

• y^ is the predicted value, 
• N is the number of trees in the forest, 
• Tn(x) is the prediction of the n-th tree for input x. 

 
XGBoost 
XGBoost is a powerful gradient boosting algorithm that builds models sequentially, with each new model correcting 
the errors of its predecessor. This iterative process leads to highly accurate and efficient predictions. XGBoost opti-
mizes a specific objective function and applies regularization to reduce overfitting, making it a robust choice for both 
regression and classification tasks. 

The prediction for an input xxx in XGBoost is given by: 
 

𝑦𝑦^ = �𝑓𝑓𝑘𝑘(𝑥𝑥),
𝑘𝑘

𝑘𝑘=1

 𝑓𝑓𝑘𝑘  ∈ 𝜌𝜌 

 
Where: 

• y^ is the predicted value, 
• k is the number of trees, 
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• fk(x) is the prediction of the k-th tree, 
• 𝜌𝜌 denotes the space of regression trees. 

 
The objective function L optimized during training includes both a loss function and a regularization term: 

 

𝐿𝐿(∅) = �𝑙𝑙(𝑦𝑦𝑘𝑘 ,𝑦𝑦^𝑘𝑘 ) + 
𝑖𝑖

 �Ω(𝑓𝑓𝑘𝑘) 
𝑘𝑘=1

 

 
Where: 

• l is the loss function (e.g., mean squared error), 
• Ω(fk) is the regularization term for tree k. 

 
Artificial Neural Networks (ANN) 
ANN is a deep learning approach that simulates the neural networks of the human brain, passing data through multiple 
layers of interconnected nodes (neurons). Each layer captures different aspects of the data, allowing the network to 
learn complex patterns. The model adjusts its internal connections (weights and biases) during training to minimize 
the error between predicted and observed values. 

The output of a neuron in a neural network is computed as: 
 

𝑎𝑎𝑗𝑗
(𝑙𝑙) = σ � 𝑤𝑤𝑗𝑗𝑗𝑗

(𝑙𝑙)𝑎𝑎𝑗𝑗
(𝑙𝑙−1) + 

𝑛𝑛(𝑙𝑙−1)

𝑖𝑖=1

𝑏𝑏𝑗𝑗
(𝑙𝑙) 

 
Where: 

• 𝑎𝑎𝑗𝑗
(𝑙𝑙) is the activation of the j-th neuron in layer l, 

• σ is the activation function (e.g., ReLU, sigmoid), 
• 𝑤𝑤𝑗𝑗𝑗𝑗

(𝑙𝑙) is the weight connecting neuron i in layer l-1 to neuron j in layer l, 
• 𝑏𝑏𝑗𝑗

(𝑙𝑙) is the bias term for neuron j in layer l. 
 
Model Validation and Hybrid Machine Learning 
 
The performance of each model was evaluated using the coefficient of determination (R2) from simple multiple linear 
regression between observed and predicted intrinsic clearance values. The R2 value serves as a key indicator of how 
well the model's predictions match the observed data, with higher R2 values indicating better model performance. This 
approach provided a straightforward and effective means of assessing the accuracy of the models across different 
pesticide categories. 

To optimize predictive accuracy, a hybrid model approach was explored. The hybrid model was constructed 
by selecting the best-performing model for each pesticide category based on its R2 value. The predictions from these 
models were then integrated to create a combined output that leveraged the strengths of each individual model. This 
approach was particularly effective in enhancing overall predictive accuracy by ensuring that the most suitable model 
was applied to each specific category. 

This hybrid model approach is especially advantageous for predicting intrinsic clearance (Clint) for newly 
discovered chemicals. Once the molecular descriptors are generated from the chemical structure, provided as a 
SMILES (Simplified Molecular Input Line Entry System) code, the hybrid model can dynamically select and apply 
the most accurate algorithm for the corresponding category. This ensures that Clint predictions are as reliable and 
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precise as possible, making this approach a powerful tool for rapid evaluation in chemical discovery and safety as-
sessments. 
 

Results 
 
Analysis of Training Data and Parameter Selection Using kNN 
 
Figure 1 illustrates the top 10 molecular descriptors for each pesticide category—Total, Herbicides, Insecticides, and 
Fungicides—ranked by their correlation with intrinsic clearance (Clint) values, as determined by the k-nearest neigh-
bors (kNN) algorithm. These rankings showcase the descriptors most strongly associated with Clint within each cate-
gory. While Figure 1 highlights the top 10 descriptors based on their ranking, it's important to note that in the subse-
quent machine learning models, only descriptors with an R2 value greater than 0.5 were selected as denoted in Table 
1. This careful selection process ensures that the models focus on the most predictive molecular features, thereby 
enhancing the accuracy of Clint predictions (Obach, 1999; Saeed et al., 2017). 
 

 
 
Figure 1. kNN-Generated Correlation Ranking for Total (top left), Herbicides (top right), Fungicides (bottom left) 
and Insecticides (bottom right). 
 
Table 1. Selected Descriptors (R2>0.5) for Each Pesticide Category Based on kNN Analysis 
 

Pesticide Category Selected Descriptors R2 Value Range 
Total minHBint4, maxHsssNHp, minHsssNHp, SHsssNHp, nHsssNHp 0.580 - 0.758 
Herbicides minHBint5, SHCsatu, maxHBint3, SHBint3, minHBint3, nHCsatu, 

minHtCH, SHtCH, maxHtCH, C2SP1 
0.837 - 0.960 

Insecticides SdS, maxdS, mindS, nHeteroRing, ndS 0.538 - 0.557 

Volume 13 Issue 4 (2024) 

ISSN: 2167-1907 www.JSR.org/hs 5



   
 

   
 

Fungicides MDEO-11, minsOm, maxsOm, SsOm, MDEN-33 0.838 - 0.845 
 
Explanation of High Correlations for Each Pesticide Group 
 
The selected molecular descriptors exhibited strong correlations with intrinsic clearance (Clint) values across the dif-
ferent pesticide categories—Total, Herbicides, Insecticides, and Fungicides. These correlations can be explained by 
the specific roles that these descriptors play in the metabolic processes affecting Clint. Below is a detailed analysis of 
why these descriptors are significant for each pesticide group. Table 2 provides a detailed overview of the molecular 
descriptors that were found to have the highest correlations with intrinsic clearance (Clint) across the four pesticide 
categories. The table includes both the descriptor names and their respective definitions, offering insights into why 
these specific molecular features are significant in predicting Clint for each group. 
 
Table 2. Description of molecular descriptors in Top 10 Ranks. 
 

Total Herbicides 

minHBint4 
The minimum value of hydrogen bond in-
teractions involving four atoms. 

minHBint5 
The minimum value of hydrogen bond interac-
tions involving five atoms. 

maxHsssNHp 
The maximum value of three single-bonded 
hydrogens attached to a nitrogen with a lone 
pair. 

SHCsatu 
The sum of the contributions from all carbon 
atoms with single bonds only in the molecule 

minHsssNHp 
The minimum value of the three single-
bonded hydrogens attached to a nitrogen 
with a lone pair.  

maxHBint3 
The maximum value of hydrogen bond interac-
tions involving three atoms.  

SHsssNHp 
The sum of the values for three single-
bonded hydrogens attached to a nitrogen 
with a lone pair. 

SHBint3 
The sum of all hydrogen bond interactions in-
volving three atoms.  

nHsssNHp 
The count of occurrences of three single-
bonded hydrogens attached to a nitrogen 
with a lone pair.  

minHBint3 
The minimum value of hydrogen bond interac-
tions involving three atoms. 

minssCH2 
The minimum value of a carbon atom at-
tached to two hydrogens and two single 
bonds. 

nHCsatu 
The count of carbon atoms with only single 
bonds in the molecule.  

maxssCH2 
The maximum value of a carbon atom at-
tached to two hydrogens and two single 
bonds. 

minHtCH 
The minimum value of hydrogen atoms at-
tached to a carbon atoms with a triple bond. 

maxHBint4 
The maximum value of hydrogen bond in-
teractions involving four atoms.  

SHtCH 
The sum of contributions from all hydrogen at-
oms attached to carbons with triple bonds.  

minsOm 
The minimum value of oxygen atoms in a 
specific molecular environment.  

maxHtCH 
The maximum value of hydrogen atoms at-
tached to a carbon atoms with a triple bond. 

maxsOm 
The maximum value of oxygen atoms in a 
specific molecular environment. 

C2SP1 
The count of carbon atoms with two attached 
single bonds and one attached triple bond.  

Insecticides Fungicides 

SdS 
The sum of all sulfur-sulfur single bonds in 
a molecule. 

MDEO-11 
The mean distance between oxygen atoms sep-
arated by 11 bonds within the molecule.  

maxdS 
The maximum value of any sulfur atom 
connected by a single bond in a molecule. 

minsOm 
The minimum value of oxygen atoms in a spe-
cific molecular environment.  

mindS 
The minimum value of any sulfur atom con-
nected by a single bond in a molecule.  

maxsOm 
The maximum value of oxygen atoms in a spe-
cific molecular environment.  
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nHeteroRing 
The number of non-carbon atoms present in 
a ring structure within the molecule.  

SsOm 
The sum of contributions from oxygen atoms in 
a specific molecular environment.  

ndS 
The count of sulfur atoms connected by a 
single bond in a molecule.  

MDEN-33 
The mean distance between nitrogen atoms 
separated by 33 bonds within the molecule.  

ATSC2V 
The autocorrelation of the topological 
structure at lag 2 using van der Waals vol-
umes as weights.  

nsOm 
The count of oxygen atoms in a specific molec-
ular environment.  

SpMax2_Bhp 
The maximum value of the Burden eigen-
value for a 2-bond length path in the mole-
cule, focusing on polar hydrogens.  

SHBint6 
The sum of all hydrogen bond interactions in-
volving six atoms.  

minaaN 
The minimum value of NH2 or NH in the 
molecule. 

minHBint6 
The minimum value of hydrogen bond interac-
tions involving six atoms.  

maxaaN 
The maximum value of NH2 or NH in the 
molecule. 

AATS6s 
The average autocorrelation of the topological 
structure at lag 6 using atom-level van der 
Waals surface areas as weights.  

VP-1 
The first component of the VAMP de-
scriptor, related to the molecular volume 
and shape. 

ATSC6s 
The centered autocorrelation of the topological 
structure at lag 6 using atom-level van der 
Waals surface areas as weights. 

 
Total 
For the Total category, the descriptors minHBint4, maxHsssNHp, minHsssNHp, SHsssNHp, and nHsssNHp are re-
lated to hydrogen bonding, particularly involving nitrogen atoms with lone pairs. Hydrogen bonding is crucial for the 
interaction between compounds and metabolic enzymes, such as cytochrome P450, which significantly influences a 
molecule’s metabolism and clearance rate (Lewis, 2002; Obach, 1999). The descriptors minssCH2 and maxssCH2 
reflect specific carbon environments that may impact the compound's reactivity and interaction with these enzymes 
(Smith et al., 1996). Additionally, minsOm and maxsOm quantify the presence and environment of oxygen atoms, 
which are critical for oxidation reactions during metabolism, further affecting Clint (van de Waterbeemd & Gifford, 
2003). 
 
Herbicides 
In the Herbicides category, descriptors such as minHBint5, maxHBint3, SHBint3, and minHBint3 focus on hydrogen 
bond interactions involving three or five atoms. The strength and number of these hydrogen bonds directly affect how 
herbicides are metabolized, thus influencing their clearance rates (Obach, 1999; Gleeson, 2008). The descriptors 
SHCsatu and nHCsatu are related to the saturation of carbon atoms, which affects metabolic stability and oxidation 
processes in herbicides (Hansch et al., 2005). Descriptors like minHtCH, maxHtCH, and SHtCH involve hydrogen 
atoms attached to carbons with triple bonds, which can impact the molecule’s rigidity and susceptibility to metabolism, 
thereby altering its clearance (Smith et al., 1996). C2SP1 represents specific carbon bonding environments that influ-
ence the molecule's overall shape and electron distribution, critical for interaction with metabolic enzymes (Klopman 
& Chakravarti, 2003). 
 
Insecticides 
For Insecticides, descriptors SdS, maxdS, mindS, and ndS are related to sulfur-sulfur single bonds, significant because 
sulfur atoms are key sites for oxidation or reduction during metabolism (Lewis, 2002; Kirchmair et al., 2012). The 
nHeteroRing descriptor counts non-carbon atoms in ring structures, with heteroatoms like oxygen, nitrogen, or sulfur 
altering the molecule's reactivity and metabolism (Gleeson, 2008). ATSC2V and SpMax2_Bhp involve topological 
structure and autocorrelation using van der Waals volumes, impacting how the molecule fits into the active site of 
enzymes (Ertl et al., 2000). Descriptors minaaN and maxaaN reflect the presence of NH2 or NH groups, common sites 
for metabolic reactions like deamination, which directly influence Clint (Smith et al., 1996). VP-1 relates to molecular 
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volume and shape, factors crucial for how well a molecule is processed by enzymes, affecting its clearance (Kirchmair 
et al., 2012). 
 
Fungicides 
In the Fungicides category, MDEO-11 and MDEN-33 descriptors reflect the mean distance between oxygen or nitro-
gen atoms, which influence the molecule's 3D structure and its interaction with metabolic enzymes (Kirchmair et al., 
2012). Descriptors like minsOm, maxsOm, nsOm, and SsOm focus on oxygen atoms' environments, critical for met-
abolic processes such as oxidation (van de Waterbeemd & Gifford, 2003). SHBint6 and minHBint6 involve hydrogen 
bonds with six atoms, indicating complex interactions affecting how the molecule is metabolized (Lewis, 2002). Fi-
nally, AATS6s and ATSC6s describe autocorrelation of topological structures at lag 6, analyzing the molecule's shape 
and electron distribution, which influence its interactions with enzymes (Ertl et al., 2000). 
 
Machine Learning Results 
 
Three machine learning models—Random Forest (RF), XGBoost, and Artificial Neural Networks (ANN)—were 
trained and evaluated across the four pesticide categories: Total, Herbicides, Insecticides, and Fungicides. The perfor-
mance of these models was assessed using the coefficient of determination (R2), which indicates how well the model's 
predictions match the observed intrinsic clearance values. 

Table 3 summarizes the R2 values for each model across the different pesticide categories. The Random 
Forest model achieved the highest R2 value for the Herbicides category, while the XGBoost model outperformed the 
others in the Total, Insecticides, and Fungicides categories. 
 
Table 3. Correlation coefficient (R2) to evaluate model performance of the three models. 
 

Model 
R2 (observed vs. predicted) 

Total (N=66) Herbicides (N=20) Insecticides 
(N=24) 

Fungicides (N=22) 

Random Forest 0.533 0.967 0.679 0.742 
XGBoost 0.744 0.705 0.806 0.840 

ANN 0.098 0.791 0.303 0.372 
Hybrid Machine Learning Model 
 
To optimize predictive accuracy, a hybrid model was developed by selecting the best-performing machine learning 
model for each pesticide category based on the R2 values. As shown in Table 4, the hybrid model dynamically chooses 
the model that performed the best for each individual prediction task within each category. This approach ensures that 
the strongest predictive algorithm is applied to each new data point, thereby enhancing overall predictive accuracy 
across the pesticide categories. The use of hybrid models, which leverage the strengths of different algorithms to 
improve prediction outcomes, is well-supported in the literature (Zhang & Ma, 2012; Kourou et al., 2015). 
 
Table 4. Multiple Linear Equation for Each Machine Learning Model with the Highest R2. 
 

Pesticide Category Selected Model R2 
Total XGBoost 0.744 

Herbicides Random Forest 0.967 
Insecticides XGBoost 0.806 
Fungicides XGBoost 0.840 
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This approach can be particularly powerful when predicting intrinsic clearance (Clint) for a newly discovered 

chemical. After receiving the chemical structure in the form of a SMILES (Simplified Molecular Input Line Entry 
System) code, molecular descriptors are calculated, and the hybrid model then selects the best-performing model for 
the corresponding class or category to predict Clint. This streamlined process allows for rapid and accurate predictions 
of Clint, facilitating more efficient drug discovery and chemical safety evaluations. 
 

Conclusion 
 
This study successfully demonstrated the application of hybrid machine learning models to predict intrinsic clearance 
(Clint) for various pesticide categories, leveraging the strengths of different algorithms—Random Forest, XGBoost, 
and Artificial Neural Networks (ANN). By selecting the best-performing model for each pesticide category, the hybrid 
model approach provided a significant enhancement in predictive accuracy, particularly when compared to individual 
models. 

The predictive accuracy varied across the different pesticide categories. For the Herbicides category, the 
Random Forest model achieved the highest performance with an R2 value of 0.967, while for Insecticides and Fungi-
cides, XGBoost was the best-performing model with R2 values of 0.806 and 0.840, respectively. In the Total category, 
XGBoost also outperformed the other models, achieving an R2 value of 0.744. The overall accuracy range for these 
models spanned from 0.098 (for ANN in the Total category) to 0.967 (for Random Forest in the Herbicides category).  

However, the study also faced significant challenges, particularly in the treatment of outliers and the handling 
of datasets with an excessive number of zeros. These issues can distort model performance, leading to reduced accu-
racy and biased predictions. Outlier treatment required careful consideration, as outliers can disproportionately influ-
ence model training, especially in smaller datasets. Similarly, the presence of numerous zeros in the dataset, which 
might represent undetectable or negligible Clint values, posed difficulties in model fitting and required specific pre-
processing strategies to mitigate their impact on model performance. 

Despite these challenges, the hybrid model's ability to dynamically select the optimal predictive algorithm 
based on the input chemical structure makes it a powerful tool for rapid and accurate prediction of Clint for newly 
discovered chemicals. By providing a streamlined workflow—from receiving a chemical structure in the form of a 
SMILES code, to calculating molecular descriptors, to predicting Clint—this approach has the potential to signifi-
cantly accelerate the drug discovery process and enhance chemical safety evaluations. 
The study also highlighted the importance of molecular descriptors in predicting Clint, with key descriptors related to 
hydrogen bonding, molecular topology, and specific atom environments showing strong correlations with metabolic 
clearance rates across different pesticide classes. These findings underscore the value of using detailed molecular 
descriptors in combination with advanced machine learning techniques to improve the prediction of pharmacokinetic 
parameters. 

The integration of in silico models, such as the one developed in this study, offers a promising alternative to 
traditional in vivo methods, reducing reliance on animal testing while providing more efficient and cost-effective ways 
to assess the metabolic clearance of chemicals. As machine learning and computational chemistry continue to evolve, 
further refinement and validation of these models will undoubtedly enhance their predictive power and broaden their 
applicability across different chemical and pharmacological domains. 
 

Limitations 
 
The study faced significant limitations, including the presence of outliers that could skew model predictions and re-
duce accuracy, particularly in smaller datasets. Additionally, the excessive number of zero values in the intrinsic 
clearance (Clint) measurements posed challenges for model training, potentially leading to less reliable predictions. 
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Moreover, the limited data availability in certain pesticide categories, such as herbicides with only 20 samples, con-
strained the models' ability to generalize and perform robustly, especially in models like Random Forest that typically 
require larger datasets to achieve optimal performance. 
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