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ABSTRACT 

Solar power is used to combat climate change and promote sustainable development. However, the efficiency and 
reliability of solar energy systems are heavily reliant on accurately forecasting solar output. We aimed to identify the 
most effective machine learning algorithm from the scikit-learn library for predicting the AC power output of solar 
cells. Unlike previous models that failed to capture changes in environmental conditions or complex dependencies 
influencing solar cell performance, we found a model that integrates various input parameters, including daily yield, 
total yield, ambient temperature, module temperature, irradiation, and month. Our goal was to find an algorithm that 
would enable accurate forecasts across different seasons and improve long-term prediction capabilities. This robust-
ness is crucial for real-world applications, helping stakeholders in the energy sector make informed decisions, enhance 
grid reliability, promote renewable energy integration, and expedite the shift toward sustainable energy. Through 
testing various algorithms, the Random Forest Regressor model demonstrated highest accuracy with an R-Squared 
score of 0.968. This indicates the model’s proficiency in identifying key factors affecting solar energy generation and 
predicting future solar output with minimal error across a range of renewable energy applications. Grid operators can 
use the model’s predictions to optimize power distribution, while solar companies can enhance module and tracker 
placement for better efficiency. With the potential to improve financial returns for solar investors and strengthen the 
bankability for finance partners, this model emerges as a valuable tool for developers, vendors, and energy offtake 
partners in maximizing the potential of renewable energy installations. 

Introduction 

As citizens and policymakers have become increasingly concerned with the deleterious environmental impacts of 
fossil fuels, there has been increasing demand for sustainable and efficient energy sources. This has led to a growing 
reliance on solar power energy for residential and commercial applications. As of February 2024, solar energy ac-
counted for 3.9% of all power generation in the United States. By 2030, solar energy will constitute 30% of all energy 
generation in the United States at an approximate investment cost of $120 billion dollars (Solar Energy Industries 
Association [SEIA], 2021). As solar energy spreads across America, the need for accurate predictions of how solar 
cells, especially amidst unprecedented weather fluctuations, will behave becomes more essential (U.S. Energy Infor-
mation Administration [EIA], 2024). 

The primary question driving this paper is: How can we predict the output of solar cells to optimize the 
harvesting of radiant energy? Accurate predictions can lead to better energy planning and better efficiency for solar 
across the renewable industry sector. This will drive lower total cost of ownership, which will lead to more solar in 
the United States and less consumption of fossil fuels. This research paper introduces a machine learning model that 
can forecast the AC power output of solar cells to address this issue. 

The models investigated in this research rely on data from the scikit-learn library (Buitinck et al., 2013) as 
its foundational component. It integrates various inputs including daily yield, total yield, ambient temperature, module 
temperature, irradiation, and the month of the year. In the context of evaluating artificial intelligence (AI) algorithms 
used for predicting solar cell output, daily yield and total yield refer to two important metrics that help in understanding 
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and assessing the performance of solar energy systems. Daily yield represents the amount of electricity generated by 
a solar panel or a solar energy system within a single day. It is typically measured in units such as kilowatt-hours 
(kWh) or megawatt-hours (MWh). Daily yield is influenced by various factors including solar irradiance, ambient 
temperature, shading, system efficiency, and tilt angle of the solar panels. AI algorithms can utilize data on these 
factors, along with historical performance data, weather forecasts, and other relevant information, to predict the daily 
yield of solar cells for a given day. Predicting daily yield accurately is crucial for estimating daily energy production 
and optimizing system performance. 

Total yield represents the cumulative amount of electricity or energy production efficiency generated by a 
solar panel or a solar energy system over a certain period, typically since the installation or commissioning of the 
system. Like daily yield, total yield is also measured in units such as kilowatt-hours (kWh) or megawatt-hours (MWh). 
AI algorithms can analyze historical data on total yield, along with environmental and operational factors, to identify 
trends, patterns, and potential areas for optimization. Predicting total yield accurately is essential for assessing the 
long-term viability and economic viability of solar energy projects. 

Ambient temperature and module temperature influence the efficiency of solar panels and overall system 
performance. High temperatures can reduce the efficiency of solar cells, leading to decreased energy output. By mon-
itoring ambient and module temperatures in real-time and incorporating this data into predictive models, AI algorithms 
can adjust system parameters such as tilt angle, ventilation, or cooling mechanisms to mitigate temperature-related 
losses and optimize energy production. 

Solar irradiation is another key determinant of energy generation in solar energy systems. By quantifying the 
amount of solar radiation reaching the solar panels, AI algorithms can estimate potential energy output under different 
weather conditions. By analyzing historical irradiation data and using weather forecasting models, AI algorithms can 
anticipate variations in solar irradiance and adjust system parameters accordingly to maximize energy production 
efficiency. 

Time-related factors such as the time of day, season, and month of the year influence solar energy generation 
patterns. For example, solar irradiance levels vary throughout the day and across different seasons due to changes in 
the sun’s position and atmospheric conditions. By considering time-related factors in predictive models, AI algorithms 
can optimize the scheduling of energy generation, storage, and distribution activities to align with periods of peak 
solar availability and maximize energy production efficiency. 

By integrating these diverse inputs and influences on solar cell behavior, such as daily yield, total yield, 
ambient temperature, module temperature, irradiation, and time-related factors, this study explores which AI algo-
rithms can be used to develop predictive models that identify optimal operating conditions and adjust system param-
eters to maximize energy production efficiency in solar energy systems. Identifying such a model has the potential to 
facilitate data-driven decision-making and enable proactive management of solar energy resources, ultimately enhanc-
ing the economic viability and sustainability of solar energy projects. 

This research addresses a supervised regression problem, where the algorithm is trained on a dataset predict-
ing numeric values. Specifically, the output of the model focuses on the AC power output, a pivotal metric for as-
sessing the performance of solar cells. The dataset comprises two distinct categories of numerical variables: weather-
related data and solar-specific data. The overarching objective of this study is to leverage factor dependencies within 
these datasets to aid in predicting the future behavior of solar cells using Linear Regression, Ridge Regression, Lasso 
Regression, Random Forest Regressor, and Decision Tree Regressor. 
 

Background 
 
Several researchers have demonstrated the potential of using AI applications in solar energy. In Yap’s (2022) paper, 
“Artificial intelligence based MPPT techniques for solar power system: A Review,” as well as Kah’s (2022) paper 
“Artificial intelligence techniques in solar energy applications.” Yung and Kah explore how AI algorithms enhance 
the efficiency and performance of solar power systems by optimizing maximum power point tracking (MPPT). Yung’s 
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research delves into the development and implementation of AI-based MPPT techniques. By utilizing algorithms such 
as artificial neural networks (ANNs) or genetic algorithms (GAs), Yap aimed to improve the accuracy and speed of 
MPPT in solar photovoltaic (PV) systems. These techniques enable the system to dynamically adjust to changing 
environmental conditions and extract maximum power from the solar panels, thereby enhancing overall energy har-
vesting efficiency. However, the scalability, adaptability and effectiveness of these techniques may be limited and 
vary depending on factors such as system size, environmental conditions, and hardware constraints, falling short in 
scenarios involving shading or unexpected variables. Additionally, the computational complexity and resource re-
quirements associated with AI-based MPPT techniques could pose challenges for real-time implementation in large-
scale PV systems or in environments with limited processing capabilities. Furthermore, the performance of AI algo-
rithms may degrade over time due to changes in environmental conditions or system dynamics, requiring continuous 
monitoring and retraining to maintain optimal performance. 

Similar to my work, Yung and Kah’s work focused on AI applications in predicting solar irradiance, the 
amount of solar energy received, particularly in regions like Johannesburg. By leveraging AI algorithms such as sup-
port vector machines (SVMs) or deep learning models, Kah aimed to forecast solar irradiance levels with high accu-
racy. This predictive capability is crucial for optimizing the operation of solar power systems, as it allows for better 
planning and management of energy generation, storage, and distribution. One limitation of Kah’s study is the reliance 
on specific regional data, such as that from Johannesburg. While focusing on a specific region allows for a detailed 
analysis of local factors influencing solar irradiance prediction, it may limit the generalizability of the findings to other 
locations with different climatic conditions, geographic features, and solar energy infrastructures. Additionally, the 
accuracy of AI models for predicting solar irradiance is highly dependent on the quality and quantity of available data, 
as well as the performance of the selected algorithms. Therefore, while Kah’s work provides valuable insights into the 
application of AI in solar irradiance prediction for regions like Johannesburg, its findings may not directly translate 
to other geographic locations without further validation and adaptation to local conditions. 

Kalogirou and Arzu Şencan (2010) also explored the application of various AI techniques in different aspects 
of solar energy, particularly focusing on optimization. Their study encompasses a range of AI techniques, including 
but not limited to ANNs, GAs, SVMs, and deep learning models. Since their research primarily focuses on the appli-
cation of AI techniques in solar energy optimization, it may not fully capture the nuances or challenges specific to 
different geographical locations, climates, or types of solar energy systems. Additionally, the effectiveness of such AI 
techniques may vary depending on the availability and quality of data, as well as the specific characteristics of the 
solar energy infrastructure being optimized. Therefore, while their study provides valuable insights into the potential 
of AI in solar energy optimization, the applicability of their findings may require further validation across diverse 
contexts and settings. 

While these studies highlight the potential of AI-driven approaches in understanding solar energy systems, 
ensuring the robustness and reliability of these algorithms in dynamic operating conditions is essential for their prac-
tical utility in solar energy systems. AI algorithms must accurately predict the output of solar cells in various condi-
tions to ensure reliable energy generation estimates. In this study we examine whether the inclusion of diverse inputs, 
such as daily yield, total yield, ambient temperature, module temperature, irradiation and the month of the year can be 
used in an AI algorithm model to accurately and precisely capture the complex interactions between various environ-
mental factors and solar cell performance, thus improving accuracy and prediction for solar output. Such a model can 
be used to facilitate the identification of optimal operating conditions, fine-tune system parameters to maximize energy 
production efficiency and generalize across a range of scenarios to improve robustness to variability. 
 

Data Collection and Methodology 
 
This study used a dataset from Kaggle called “Solar Power Generation Data Solar power generation and sensor data 
for two power plants.” This dataset is derived from a collection effort across two solar power plants in India. Each 
plant had a power generation dataset and a corresponding sensor readings dataset of weather conditions. The data was 
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collected for AC power, DC power, daily yield, total yield, ambient temperature, module temperature, irradiation, and 
the time every 15 minutes. The power generation data is measured at the inverter level, which means it measures the 
amount of power at the place where the DC power gets converted into AC power and at a point of minimal power 
loss. For reference, solar radiation comes into the module using DC power and gets converted into AC power which 
the grid uses. The sensor data is gathered at the ground level of the plant by using sensors (Kannal, 2020). 

The dataset is structured in four distinct parts, two containing weather-related information such as ambient 
temperature, module temperature, and irradiation, and the remaining containing power related information such as AC 
power, DC power, daily yield, and total yield. Before initializing the model, preprocessing steps were conducted to 
ensure the accuracy and reliability of the data for analysis by the machine learning model. A crucial step involved 
standardizing the date column format across the dataset. This was achieved using the Pandas library’s Datetime mod-
ule to ensure consistency in the time columns across all files. Subsequently, a merge operation was employed to 
consolidate the weather and solar datasets for each plant. This merging process facilitated the combination of relevant 
data into cohesive units. Finally, the same operation was utilized to merge all datasets into a single, comprehensive 
CSV file, streamlining the data preparation process for model training and evaluation. 

To validate the effectiveness of preprocessing, the dataset was examined for null values, which signify miss-
ing data within cells. Prior to merging all four files, the dataset exhibited no null values. However, post-merging, a 
notable challenge surfaced: 23,098 null values were detected. This discrepancy stemmed from asynchronous data 
retrieval between the weather and solar datasets. Specifically, the solar data contained multiple identical copies of the 
same line, while the weather data had fewer additional values. To mitigate this issue of unnecessary redundancy, 
instances with null values were removed. This approach ensured the dataset's integrity and consistency, facilitating 
more accurate and reliable analysis by the machine learning model. 

To ensure comprehensibility for both the model and the reader, certain features required additional processing 
known as discretization, which involves converting non-numerical information into numerical form. For instance, the 
plant number feature initially utilized a lengthy array of numbers to denote each plant it referenced. We employed 
discretization to transform this into easily interpretable numerical representations for each plant (e.g., Plant 1 and Plant 
2). 

In summary, the dataset utilized in this paper comprises solar power generation and environmental data col-
lected from two plants in India. After undergoing several preprocessing steps, such as datetime standardization, data 
merging, and resolution of null value issues, the dataset was optimized for effective utilization in machine learning 
models. Before proceeding with modeling, Figure 1 displays a histogram illustrating the frequency of AC power out-
put. It is notable that a significant portion of the output registers as zero, primarily attributed to the absence of solar 
generation during nighttime, which spans half of the day. 
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Figure 1. Histogram of AC Power Output Frequency Highlighting Zero Output During Nighttime Hours 
 

Figure 2 shows a positive correlation between irradiation and AC power output. This means that as the 
amount of sunlight hitting the solar panels increases, the amount of electricity produced also increases. This makes 
sense, as solar panels convert sunlight into electricity. The graph more importantly shows that there is evident het-
eroskedasticity between irradiation and AC power output. In other words, the variance of the errors of irradiation and 
AC power output is not constant across the observations. This is due to the fact there are a number of explanatory 
factors that can affect the efficiency of solar panels, such as ambient temperature, dust, and shading, which we try to 
account for in this study. 
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Figure 2. Evidence of Heteroskedasticity Between Irradiation and AC Power Output 
 

To predict the AC power output of solar cells, various machine learning techniques were utilized from the 
scikit-learn library in Python, specifically Linear Regression, Ridge Regression, Lasso Regression, Random Forest 
Regressor, and Decision Tree Regressor. The performance of each model was evaluated using various metrics such 
as mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), and the R2 score. MAE 
measures the average difference between the predicted and actual values. Lower MAE values mean a smaller average 
difference between predicted and actual values. MSE is the average of the squared differences between predicted and 
actual values. Squaring the differences means larger errors and a lower MSE means less overall error; it may be 
influenced by outliers because one far off outlier subtracted by the actual value squared can heavily impact results. 
RMSE is the square root of the MSE. Similar to MSE, a lower RMSE suggests better model accuracy. R2, also known 
as the coefficient of determination, is a commonly used metric to determine the performance of a model. The R2 Score 
ranges from 0 to 1, where 1 means our model perfectly predicts the data, and 0 means it doesn't explain any variation. 
So, the closer the R2 Score is to 1, the better the model is at capturing patterns in the data. Once different metrics had 
been identified, the data was split into training, validation, and test data sets (Chugh, 2020). 

The dataset, encompassing parameters such as daily yield, total yield, ambient temperature, module temper-
ature, and irradiation, underwent partitioning into features denoted by a capital X and the target variable denoted by a 
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lowercase ‘y,’ with AC_POWER representing the output to be predicted. Each model independently predicted the ‘y’ 
when provided with the X in various manners, yielding diverse results. 

The dataset comprises numerical data pertaining to power generation and sensor readings, totaling 136,476 
samples. To facilitate model development, the dataset was partitioned into training and testing sets, with 80% allocated 
for training and the remaining 20% reserved for evaluating model effectiveness. This 80/20 split methodology ensures 
a balance between providing sufficient data for the model to learn from and retaining a representative portion for 
accurate testing. This separation allowed for robust model training on the majority of the dataset while enabling an 
unbiased evaluation of its predictive capabilities on unseen data. Different algorithms then were applied to the model. 

For the first predictive model, the Linear Regression algorithm was used. Linear Regression is a method that 
finds the best-fitting line through data points. It considers the relationship between input and output as a straight line. 
During training, the algorithm makes the line that best fits the data. When a new input is provided, the model uses this 
line to make predictions about the output (Kanade, 2022). Next, Ridge Regression was used, an extension of Linear 
Regression. Like Linear Regression, Ridge regression aims to fit a line that best captures the data, but it incorporates 
a penalty term to prevent overfitting, allowing the model to generalize well with new data. Essentially, Ridge regres-
sion strikes a balance between fitting the data accurately and avoiding excessive complexity in the model (Ashok, 
2024). Then the Lasso Regression was implemented, which bears resemblance to Ridge regression in its use of regu-
larization to counteract overfitting. The key distinction lies in the mathematical formula of the regularization penalty. 
While Ridge employs the sum of squared values of the coefficients, known as L2 regularization, Lasso adopts the sum 
of absolute values of the coefficients, referred to as L1 regularization (Jain, 2023). 

Next, Random Forest Regressor algorithm was explored, a machine learning model that constructs numerous 
decision trees, each trained on different subsets of the data. During training, these decision trees are built using random 
portions of the dataset, resulting in diverse and random trees. When making predictions, each individual tree contrib-
utes to the final output, thereby enhancing prediction accuracy. During testing, each tree generates its own prediction, 
and the final prediction is derived from averaging the outputs of all trees in the forest (Beheshti, 2022). 

Lastly, the Decision Tree Regressor was used, a system that partitions the data into smaller subsets and makes 
decisions at each step based on features such as daily yield, total yield, ambient temperature, module temperature, 
irradiation, and the month. It constructs a tree-like structure of decisions to arrive at a final prediction for the target 
variable, in this case, the AC power output of solar cells. During training, it learns to partition the data based on certain 
conditions to improve prediction accuracy (Verma, 2023). 

In the scikit-learn library, modifying hyperparameters for models such as Linear Regression, Ridge, Lasso, 
Random Forest Regressor, and Decision Tree Regressor can play a crucial role in fine-tuning machine learning models 
to achieve optimal performance and generalization on unseen data. They enable the customization of the behavior and 
complexity of models according to the specific characteristics of the dataset and the requirements of the prediction 
task. 

For Linear Regression, the intercept term parameter can be adjusted to preprocess variables before the data 
is subjected to regression. In the case of Ridge and Lasso, altering the α parameter enables control over the level of 
regularization, with higher values implying more stringent regularization. Regarding Random Forest Regressor, the 
maximum tree depth parameter allows selection of the number and depth of trees in the forest. Similarly, Decision 
Tree Regressor incorporates a maximum tree depth variable, which not only influences the number of trees but also 
impacts the model’s complexity. By tuning these hyperparameters, we can manually improve the models’ efficiency 
and performance. The best approach for determining the optimal hyperparameter for each model is through trial and 
error and plotting these on a graph. In this case, adjusting the hyperparameters of Linear Regression, Ridge, and Lasso 
would be inefficient and ineffective. Given that the data does not conform neatly to a linear chart, attempting to overly 
complicate or regularize these models would yield minimal benefits. However, adjusting the maximum tree depth 
parameter with respect to the Random Forest Regressor and Decision Tree Regressor models helped control for the 
complexity of decision trees, struck a balance between bias and variance, and optimized the model's performance and 
prediction task. 
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Results 
 
The effectiveness of each model was assessed using different metrics to give insights into their ability to forecast solar 
cell power output. In the initial phase of the analysis, baseline versions of each model were used to gauge their pre-
dictive capabilities. These baseline models served as a reference point for subsequent adjustments through hyperpa-
rameter tuning, allowing us to assess the raw performance of each algorithm before optimization. 

The Linear Regression model exhibited poor performance, with a high MSE of 28898.71, a similarly high 
MAE of 85.49 and relatively low R2 score, 0.798. Its inadequacy can be attributed to its simplistic assumption of linear 
relationships, which fails to account for the nonlinear factors inherent in solar generation, such as weather conditions 
and time of day. 

Subsequently, the Ridge model yielded comparable results, with similar MSE, MAE, RMSE and R2 to Linear 
Regression, as shown in Table 1. This indicates that Ridge did not significantly outperform Linear Regression, sug-
gesting that its regularization penalties did not enhance its accuracy. Similarly, the Lasso model performed slightly 
worse than Ridge and Linear Regression, with a marginally higher MSE (29005.62) and MAE (85.79). This suggests 
that the variance in regularization formulas did not necessarily improve the model’s output. Conversely, the Decision 
Tree Regressor demonstrated superior performance, with notably lower MSE (9372.14), MAE scores (26.23) and R2 
score of 0.934. Its ability to capture the complex dependencies of solar generation within its decision trees allowed it 
to effectively predict outliers and rare occurrences. Finally, the Random Forest Regressor emerged as the top per-
former, boasting the lowest MSE (4618.42) and MAE (24.76), with the highest R2 score of 0.968 among all models. 
Its robustness in handling intricate dependencies and relationships within the data makes it particularly well-suited for 
solar output prediction. 

In summary, while Linear Regression and its variants struggled due to their oversimplified assumptions about 
solar generation, the Decision Tree Regressor showcased better performance, and the Random Forest Regressor 
emerged as the most effective model, highlighting its capability to account for numerous outliers and dependencies 
that affect AC power output for solar cells. 
 
Table 1. Final model metrics after hyperparameter tuning 
 

Model MAE MSE RMSE R-squared 
(𝑅𝑅2) Score  

Linear Regression 85.49 28898.71 169.996 0.798 

Ridge Regression 85.49 28897.93 169.994 0.798 

Lasso Regression 85.79 29005.62 170.310 0.797 

Random Forest 
Regressor 

21.40 4618.42 67.959 0.968 

Decision Tree Re-
gressor 

21.03 9372.14 96.810 0.934 

 
After finalizing our model structures, we find the metrics outlined in Table 1. In our study, adjusting the 

hyperparameters of Linear Regression, Ridge Regression, and Lasso Regression were inefficient and ineffective. 
Given that the data does not conform neatly to a linear chart, attempting to overly complicate or regularize these 
models would yield minimal benefits. However, adjusting the maximum tree depth parameter with respect to the 
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Random Forest Regressor and Decision Tree Regressor models helped control for the complexity of decision trees, 
struck a balance between bias and variance, and optimized the model’s performance and prediction task. 
 

 
 
Figure 3. Effects of maximum tree depth parameter for MAE on Random Forest Regressor 
For instance, the graph in Figure 4 demonstrates that the optimal maximum tree depth for the Random Forest Regres-
sor is 14, resulting in a MAE of 21.40, as compared to the initial 24.76 MAE before adjusting the hyperparameters. 
 

 
 
Figure 4. Effects of maximum tree depth parameter for MAE on Decision Tree Regressor 
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Similarly, the graph in Figure 5 shows that the optimal maximum tree depth for the Decision Tree Regressor 
is 19.5, producing a 21.03 MAE compared to the 26.23 MAE before changing the hyperparameters. Although the 
linear regression, ridge, and Lasso models struggled to accurately predict the intricate nature of solar generation data 
due to their lack of model complexity, the Decision Tree Regressor and Random Forest Regressor models exhibited 
more promising results.  
 

Discussion 
 
This research paper employs a machine learning model to predict the AC power output of solar cells, catering to the 
growing demand for precise predictions in the renewable energy sector. This study underscores that while Linear 
Regression, Ridge, and Lasso models struggled to capture the complexities of solar generation due to their simplicity, 
the Decision Tree Regressor and Random Forest Regressor exhibited more promising outcomes. Utilizing the Deci-
sion Tree Regressor algorithm alongside various techniques from the scikit-learn library, the model leverages multiple 
input parameters such as daily yield, total yield, ambient temperature, module temperature, irradiation, and the month 
of the year to accurately forecast solar output. 

Through evaluation metrics including MAE, MSE, RMSE, and the R2 score, the Random Forest Regressor 
outperformed other models. Post-hyperparameter optimization, the Random Forest Regressor’s MAE marginally de-
creased. Furthermore, the Decision Tree Regressor also demonstrated improvement, underscoring the significance of 
hyperparameter tuning in enhancing model accuracy. 

The Decision Tree Regressor and Random Forest Regressor algorithms are significant for predicting solar 
output due to several key reasons. They are better equipped for handling nonlinear relationships. Solar energy gener-
ation is influenced by various nonlinear factors such as weather conditions, time of day, and seasonal variations. 
Decision trees, as well as random forests composed of multiple decision trees, are capable of capturing nonlinear 
relationships in the data, making them well-suited for modeling the complex interactions involved in solar energy 
production. Additionally, these algorithms can provide insights into the importance of different features (e.g., daily 
yield, ambient temperature, irradiation) in predicting solar output. By examining feature importance scores, analysts 
can identify which factors have the greatest impact on solar energy generation, aiding in system optimization and 
resource allocation. Moreover, decision trees and random forests are inherently robust to outliers and noise in the data. 
This robustness allows them to handle irregularities or anomalies in solar generation patterns, ensuring reliable pre-
dictions even in the presence of unexpected events or data discrepancies. 

Decision trees also offer interpretability, as the decision-making process is represented in a tree-like structure 
that can be easily visualized and understood. This interpretability is valuable for stakeholders seeking to comprehend 
the factors influencing solar output and make informed decisions based on model insights. This ensemble based 
method, composed of multiple decision trees, combines the predictions of individual trees to improve overall perfor-
mance and generalization. By leveraging the diversity leverage of constituent trees, random forest algorithms can 
mitigate overfitting and enhance predictive accuracy, making them particularly effective for solar output prediction 
tasks. With the growing availability of data from solar energy installations and weather monitoring stations, the scala-
bility of Decision Tree Regressor and Random Forest Regressor enables the analysis of extensive datasets to extract 
valuable insights and optimize solar energy systems. 

This study demonstrates that Decision Tree Regressor and Random Forest Regressor algorithms are powerful 
tools for predicting solar output, thanks to their ability to model nonlinear relationships, handle outliers, provide in-
terpretability, leverage ensemble learning, and scale to accommodate large datasets. These attributes make them in-
valuable assets in the pursuit of efficient and reliable solar energy forecasting and optimization. Future research en-
deavors should focus on gathering more diverse datasets, exploring the integration of real-time data, or incorporating 
other hyperparameters that could further refine solar output predictions and propel advancements in renewable energy 
technologies with these algorithms. Overall, this study highlights the potential of machine learning in revolutionizing 
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solar energy forecasting and facilitating the transition to a sustainable energy future using Decision Tree Regressor 
and Random Forest Regressor algorithms. 

As shown in this study, the integration of diverse inputs in AI algorithms used to predict the output of solar 
cells is essential for improving accuracy, adaptability, robustness, and optimization of energy harvesting processes. 
These factors enable the model to develop a comprehensive understanding of solar cell performance and provide 
reliable predictions under varying environmental conditions, ultimately facilitating efficient utilization of solar energy 
resources. 
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