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ABSTRACT 

Millions of people in the United States suffer from Alzheimer’s Disease (AD), an incurable form of dementia that 
continues to increase in prevalence. Current methods of AD diagnosis are limited to a late stage by which time the 
treatment options are limited, quality of life is poor, and cost of treatment is exponentially high. Early medical diag-
nosis of AD is difficult since standard non-invasive techniques require extensive tests and can still generate false 
positives and negatives, leading to misdiagnosis. This study proposes a supervised machine learning model trained on 
readily available Electroencephalography (EEG) patient data to diagnose potential AD patients. Relevant features 
were extracted and analyzed from an open-source EEG database, collected from 186 patients using the trained machine 
learning model of best fit. Our artificial intelligence (AI) model is an alternative to current late-state detection methods 
which require complex and risky procedures that can lead to inaccuracies. In addition, current algorithms require 
feature manipulation and sort through hundreds of thousands of raw EEG data points to obtain unreliable results. The 
results demonstrate that, given EEG data of 93 close-eyed patients, the trained logistic regression model- the machine 
learning model of best fit - achieved a sensitivity of 100% and overall accuracy of 87%, using data recordings of only 
eight second segments for each patient.  This novel AD screening tool, with a cloud-based AI model, can be easily 
deployed at primary health care clinics tor screen patients for AD during their yearly clinical visits to increase early 
diagnosis. 

Introduction 

Rationale 

Alzheimer’s Disease (AD) is a brain related disorder that affects cognitive abilities including memory, focus, attention, 
visual perception, reasoning, judgement and comprehension (National Institute on Aging, 2023). The disease impacts 
6.5 million Americans, with 121,499 officially dying from AD in 2019 (Alzheimer's Association, 2022). Total pay-
ments in 2022 for health care, long-term care and hospice services for people aged 65 and older with AD and related 
dementias are estimated to be $321 billion (Alzheimer's Association, 2022). The majority of spending is on long term 
care (~50%), but other care costs include Hospice (~10%) Medical facilities (~5%), Decedent’s home (~30%), and 
several other costs (Alzheimer's Association, 2022). Figure 1 shows the progression of Alzheimer’s Disease: AD 
moves from the medial temporal lobe, spreads to the lateral and parietal lobes, moves forward to the frontal cortex, 
and finally the occipital lobe. In each instance, the effects become more pronounced, affecting basic human functions 
like movement and sight (Alzheimer’s Disease Fact Sheet, 2023). 
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Figure 1. Schematic of the progression of Alzheimer’s Disease in specific regions of the brain, and the effects over 
the span of several years.  
 

The diagnosis of AD in its early stages can be used to determine effective therapeutic treatments that slow 
the effects of the disease (How Is Alzheimer’s Disease Treated?, 2023). However, early medical diagnosis of Alz-
heimer’s is difficult since standard non-invasive techniques require extensive tests and can still generate false posi-
tives, leading to misdiagnosis (Beach et al., 2012; Houmani et al., 2018). This study proposes a novel tool for low cost 
and high accuracy screening for AD using data from Electroencephalography (EEG) analyzed by a pre-trained super-
vised learning AI model. By using a readily available and clinically proven (FDA approved) data collection tool with 
cloud-based AI model, the proposed tool would aid in effectively screening every adult high-risk patient and support 
the goal of early detection and intervention of AD to improve disease outcomes. 
 
Diagnostic Methods for AD 
 
Current methods of AD diagnosis involve looking at the main pathological factors of AD, which include the deposition 
of the biomarker amyloid β in the brain (Murphy & LeVine, 2010). This can be measured by positron emission to-
mography (PET; illustrated in Figure 4) imaging, which observes blood flow, neurotransmitters, metabolism, and 
radiolabeled drugs (Wong et al., 2003). However, issues with radiologist training and interpretation exist: there can 
be up to 65% discrepancy in interpretation of PET imaging and the consensus diagnosis (Shipley et al., 2013). In other 
cases, neurologists use brief screening instruments such as the mini-mental state examination score and the Montreal 
cognitive test to assess patients, which function on a scale 0-30 to determine the type and severity of dementia 
(Trzepacz et al., 2015). Another method for AD diagnosis looks for signs of neuronal degeneration in the brain caused 
by the protein called tau phosphorylation. This is measured through the current gold standard for diagnosing AD, 
which is cerebrospinal fluid examination (CSF; Paraskevas & Kapaki, 2021). In a previous study the incidence of 
change in diagnosis resulting from CSF testing ranged from 7% to 27%, with the majority being a change from Mild 
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Cognitive Impairment (MCI) or non-AD to a diagnosis of AD. There were 8.5% and 10.3% changed diagnoses from 
AD to non-AD or MCI (Shaw et al., 2018). As such, there is a growing demand for the development of new, nonin-
vasive approaches to aid in the early diagnosis of AD.  
Electroencephalogram (EEG) Data 
 
An electroencephalogram (EEG) is a non-invasive, low-cost medical device that captures the brain’s electrical activ-
ity. The EEG uses small electrodes placed over the scalp to measure the absolute electrical potentials generated by the 
pyramidal neurons of the underlying cerebral cortex (Figure 2). The EEG headset first captures the brain’s electrical 
field over certain regions using small electrodes. The electrical activity is small, so an amplifier then increases the 
signal so it can be converted into data points. These points mark the voltage of the EEG signal for an electrode at a 
specific time. Thousands of these data points are captured and then graphed to create a visualization of raw EEG 
waves (Figure 2). An estimated cortical area of 10 cm2 discharging synchronously is required to generate a deflection 
on the scalp. When neurotransmitters are released at the endplate, excitatory or inhibitory postsynaptic potentials 
(EPSP/IPSP) are generated. The summation of EPSPs and IPSPs over a particular cortical region with large synchro-
nous discharge creates an electrical field (neural activity) that the EEG can measure (Rayi et al., 2021). 
 

 
 
Figure 2. Illustration of the process by which neuron activity is converted into readable EEG signals on a computer. 
During resting or relaxed states, the EEG records a sinusoidal rhythmic activity called the posterior dominant rhythm 
(PDR) that is believed to result from oscillatory interaction between the visual cortex and the subcortical structures. 
During physical/mental activity, the cortical activity desynchronizes, and oscillatory activity replaces faster frequency 
and lower amplitude activity (Rayi & Murr, 2021).  
 

Waveform frequencies in an EEG vary, including delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-
30 Hz) and gamma (30-100 Hz) frequencies. Many studies show that EEGs have advantages in the simple collection, 
objective recording, and quantification of common waveform frequencies, making it suitable for the analysis of mental 
diseases (Nayak & Anilkumar, 2019).  
 
Previous Diagnostic Uses of EEG Data 
 
The electroencephalogram has previously been used to diagnose and treat several brain disorders. For example, Mild 
traumatic brain injury (mTBI) causes brain injury that results in electrophysiologic abnormalities visible on EEG 
recordings (O’Neil et al., 2011). Immediately after mTBI, there is epileptiform activity (high amplitude sharp waves 
or high frequency discharges), followed by suppression of cortical activity typically lasting 1–2 min, and followed by 
diffuse slowing of the EEG, which returns to the normal baseline within 10 min to one hour. qEEG most commonly 
shows immediate reduction in mean alpha frequency, with increased theta, increased delta, or increased theta:alpha 
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ratio (Ianof & Anghinah, 2017). Similarly, sleep disorders cause significant decreases in electric activity, specifically 
in the bilateral dorsolateral prefrontal cortex. As described in one study, the regional brain activity alteration in healthy 
subjects after a total of 36 h of sleep deprivation relative to after normal sleep, using a percent amplitude of fluctuation 
(PerAF) method. They found that sleep deprivation resulted in a 2.23% decrease in accuracy and an 8.82% increase 
in reaction time (Dai et al., 2021). Finally, the EEG is utilized to measure electrical disturbances in the human brain 
for the diagnosis of epileptic seizures. The normal shape of EEG signals gets modified during an epileptic seizure: 
many electrical disturbances start happening in the cerebrum of epileptic patients before a seizure’s actual onset, which 
is termed a preictal stage (Shoka et al., 2023). An EEG can categorize these readings making it a useful tool when 
determining the type and onset of epilepsy (Ein Shoka et al., 2023).  
 
Alzheimer’s Detection Using EEG 
 
Recent evidence suggests that synapse deficiency indicates AD in early cognitive decline (Subramanian et al., 2020). 
An EEG can detect this biomarker by observing the reduction in complexity of EEG signals, the increase/decrease in 
certain frequency bands, and changes in EEG synchrony (Houmani et al., 2018). Spectral analysis studies suggest that 
early stages of AD involve increased activity in the delta and theta frequency bands and a reduction in activity in the 
alpha and beta frequency bands (Lizio et al., 2011). Also, reduced spectral coherence - the relation in EEG signals - 
between the brain's two hemispheres for the alpha and beta frequency bands can indicate AD (Lizio et al., 2011).  As 
Alzheimer’s disease progresses in patients, alpha rhythms can transform, moving towards the anterior areas instead 
of remaining evenly distributed in the brain (Smailovic & Jelic, 2019). Therefore, biomarkers of AD are evident in 
the brain, yet to date there has been few accurate methods of analyzing EEG data for early diagnosis.  
 
A Novel Machine Learning Model for AD Diagnosis 
 
A promising method of analyzing EEG data associated with AD is using machine learning algorithms. By doing so, 
the screening time and human intervention are reduced, which makes the diagnostic results more efficient and objec-
tive (Xia et al., 2023). Classical machine learning algorithms have previously been trained with EEG signals for clas-
sifying various mental disorders, but they usually require complex feature engineering (FE) and subsampling pro-
cesses to select appropriate features from raw EEG data, which becomes time-consuming for researchers (Xia et al., 
2023). The solution is a support vector machine (SVM), or a supervised machine learning model that uses classifica-
tion algorithms for two-group classification. Supervised learning algorithms such as the SVM model are able to make 
more efficient use of EEG data and improve the robustness of the algorithm.  
 
Study Objective 
 
Alzheimer’s is a significant and costly public health issue that is typically diagnosed only after severe symptoms 
appear in patients. Current methods of diagnosis are either invasive or require complex feature engineering and sub-
sampling processes, which are difficult for researchers.  EEG and machine learning have been utilized to detect disease 
and improve clinical outcomes but have not been tested for detection of AD. This paper evaluates a novel non-invasive 
and efficient approach to detection of AD using machine learning algorithms trained on EEG data. This approach 
offers an alternative to currently used invasive diagnostic methods that require expensive and invasive tests, complex 
and time-consuming data collection. We hypothesize that raw EEG data processed into frequency bands for the elec-
trodes can be fed into Support Vector Machine Models and used to predict early AD.  
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Methods 
 
Data Sources 
 
This study was exempt from IRB review because no primary data were collected. The data used in this study (Table 
1) is secondary data initially collected jointly by Dr. Dennis Duke and other researchers at Florida State University. 
The dataset consists of 24 healthy elderly, all being negative for any neurological or psychiatric disorder, and 160 
probable AD patients (12 Close eyed Healthy, 12 Open eyed Healthy, 80 Closed eyed AD, 80 Open eyed AD) diag-
nosed through the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's 
Disease and Related Disorders Association (NINCDS-ADRDA), and Diagnostic and Statistical Manual of Mental 
Disorders (DSM)-III-R criteria (Vicchietti et al., 2023). In this study, we utilized data from the closed-eyed patients 
only, as there is reduced interference with the electrical signals due to less eye movement when patients undergo EEG 
with their eyes closed (Barry et al., 2007).  
 

 
 
Figure 3. Schematic (A) shows the standard placement of 19 scalp electrodes in a 10-20 EEG system and the graph 
(B) is a demonstration of the plot for raw EEG data from Healthy Patient 1 with eyes closed for 15/19 electrodes. 

 
The 10-20 system is an internationally recognized method that ensures electrode-spacing is 10-20% of the 

entire skull based on size and shape, starting from the nasion (indent between the forehead and nose) and ending at 
the inion (ridge at the base of the skull), as shown in Figure 3A.  The electrodes comprise of Fp1, Fp2, F7, F3, Fz, F4, 
F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2 electrodes. Two reference electrodes are also used (A1 and 
A2) which cancel external interference between electrodes but will not be included in sample data as it is not signifi-
cant to diagnosing AD. Numbers differentiate electrodes between the hemispheres, with even numbers (2, 4, 6, 8) 
corresponding to the right and odd (1, 3, 5, 7) referencing the left. Letters indicate the lobe, or area of the brain it is 
reading from and distance from the sagittal midline: pre-frontal (Fp), frontal (F), temporal (T), Parietal (P), Occipital 
(O), and Central (C) (Morley et al.). The data was taken from 19 scalp electrodes at a frequency of 128 Hz over an 8 
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second interval, generating 1024 EEG data points for each electrode. Using the Microsoft Excel software, the student 
created graphs for each electrode using a standardized scale in the original electrode placement, as shown in Figure 
3B.  

We used python programming language using Jupyter Notebook to develop the software. The code used in 
this study is publicly available in GitHub (GenerateEEGBands, 2024).   
 
Approach to AD Detection 
 
The methodology in this study uses a framework that consists of several steps. First, the raw EEG data referenced 
from the database (as described in Figure 4) is first collected as times-series data using EEG electrodes and imputed 
into a spreadsheet. The data is then pre-processed using a band pass filter, extracting frequencies from 1-55 Hz. The 
EEG data is then transformed into functionally distinct frequency bands by calculating power spectral density.  Using 
visual analysis, frequency bands for electrodes with the highest discrimination are selected as relevant features, or the 
data used in training and testing the SVM models. The extracted relevant features for all AD and healthy patients were 
randomly partitioned into the training and test sets, with 80% of patients assigned to the training set and 20% allocated 
to the test set. 

For the training set, patient data was processed by multiple SVM models. The SVM model of best fit (optimal 
decision boundary, detailed below) was then selected to classify the test data set to evaluate performance and fitting 
accuracy. 
 

 
 
Figure 4. Flowchart of the overall modeling methodology for using EEG data to train the SVM models for the iden-
tification of potential AD patients. 
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EEG Data Preprocessing 
 
The first preprocessing step was to transform the EEG data into functionally distinct frequency bands. Specifically, 
the goal was to compute delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–100 Hz) 
bands in the dataset. Transforming the EEG signal into a specific frequency is performed using Fourier transformation. 
Fourier transformation is computed using an algorithm called Fast Fourier Transform (FFT). FFT returns for each 
frequency a complex number from which amplitude and phase of the signal is extracted for each specific frequency 
(delta, theta, alpha, beta, and gamma). Using spectral analysis, we obtain an estimate of power spectral density (or 
periodogram), expressed in (micro) Volts2 per Hertz. For computation of spectral density, we used Welch’s periodo-
gram, which consists of averaging consecutive Fourier transforms of repeating signals. Figure 5 presents Welch's 
periodogram method used to create the power spectral density graph with the delta band highlighted in blue; taking 
the area of the blue polygon gives the absolute delta band power.  
 

 
 
Figure 5. A plot of Welch's periodogram generated using Healthy Patient 1.  
 
Table 1. Computation of all frequency band values for each electrode for one patient. The absolute power for each 
electrode across all frequency bands was calculated using Welch's periodogram method and formatted into the fol-
lowing table using Microsoft excel.  

Electrode Delta Theta Alpha Beta Gamma 
C3 10.60438 18.96102 4.303051 2.343837 0.187688542 
C4 8.79969 35.1022 5.063861 3.301477 0.177740901 
Fp1 58.82602 23.81976 3.339879 2.487537 0.281819191 
Fp2 63.02502 21.80444 3.800342 2.789324 0.563115254 
Fz 15.88843 43.10278 4.531778 2.48771 0.238718511 
O1 4.759462 9.196415 1.64365 2.24095 0.359242107 
O2 5.270102 12.50652 1.577749 1.44269 0.157068639 
P3 9.856439 15.42819 3.265286 1.912792 0.150530815 
P4 8.023648 34.55506 4.722734 3.345265 0.169045158 
Pz 8.800163 20.83357 3.028051 2.253788 0.16707739 
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Figure 6. Decomposed EEG absolute band power of a healthy patient into windowed frequency components to cal-
culate (∆, ∅, ß, and α) for an 8 second interval data. The size of the frequency window was higher for lower band 
frequencies (∆ = 100) and lower for higher bands (ß = 20). 
 
EEG Feature Extraction 
 
The feature extraction was performed on all 19 electrodes, for 80 AD patients and 12 Healthy individuals with eyes 
closed. A subset of electrodes was selected based on t-tests and resulting p-values, showing statistical differences in 
the delta and theta frequency values between AD and healthy patients. Although we started with the subset of elec-
trodes to develop and test the models, the software was evaluated on all 19 electrodes to collect the accuracy metrics 
as shown in the Expected Results section.  

After pre-processing and spectral analysis of the various frequency bands, the Cerebral cortex electrodes (C3) 
were used since they produced the greatest average discrimination between AD and healthy patients. T-Test done on 
Delta frequency band values for AD and Healthy patients produced t test value of 3.49275 and p-value of 0.000746 
indicating statistically significant difference. Among all frequency bands in C3, delta and theta had the highest dis-
crimination rates (Figure 7). Therefore, in the trial, we took the absolute power for theta and delta frequency bands 
(measured in (micro)-Volts2 per Hertz) for the C3 electrode with 70 AD patients and 7 healthy individuals randomly 
selected from the dataset for model development and training. The remaining 10 AD and 5 Healthy patient individuals 
were kept aside for model testing. 
 

T3 5.759189 4.273629 1.52749 1.153995 0.215209603 
T4 4.049661 14.0314 3.993013 3.964438 0.665867214 
T5 6.965542 8.763141 1.805596 2.673532 0.446689169 
T6 3.867188 13.73349 2.848124 1.541352 0.152235558 
Cz 11.35414 33.78903 4.85109 5.35517 0.238467977 
F1 58.82602 23.81976 3.339878 2.487537 0.281819191 
F2 63.02502 21.80444 3.800342 2.789324 0.563115254 
F3 16.04242 31.04796 3.606483 2.789324 0.563115254 
F4 16.93092 34.96975 4.93558 2.70223 0.398785732 
F7 18.62485 16.72697 2.429497 1.77836 0.252503591 
F8 24.63161 18.7295 3.827632 2.350093 0.357839136 
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Figure 7. Comparison of the absolute powers (measured in uV2) of the Delta and Theta frequency bands for Healthy 
and AD patients in the referenced study. As demonstrated, there is a clear difference in the absolute Delta power 
between AD and healthy patients.   
 

To analyze brain waves, we used spectral estimation as a quantitative means of breaking down the EEG 
signal in terms of the different frequency waves that make it up, and their oscillatory power. We used the C3 electrode 
data to plot a spectral power at each time during the epoch. 
 

 
 
Figure 8. Time-frequency plot for C3 electrode, using Healthy Patient 1 (a)  and AD Patient 1 (b), both with eyes-
closed. Note that Healthy Patient 1 has a higher power frequency for Delta and Theta frequency bands than AD Patient 
1 (according to the Power/Frequency legend, where Healthy Patient goes up to 20 dB/Hz vs. AD patient only goes up 
to 10 dB/Hz) 
 

To do a spectral estimation of the brainwave, which is a non-stationary signal, we used the spectrogram to 
transform the brain waves into a time-frequency domain. The spectrogram in Figure 8 shows the frequency time plot, 
for a healthy and an AD patient, both with eyes closed. The x-axis represents the time in seconds, and the y-axis 
represents the frequency in Hertz. The legend shows the distribution of Power/Frequency in dB/Hz, with the color in 
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the graph corresponding to the power. The lighter color represents higher power. Because the code was written in 
python, the graphs generated are based on different Power/Frequency values, as shown in the legends. Note that the 
Healthy patient is on the (-30,20) Power/Frequency range, while the AD patient is on the (-40,10) Power/Frequency 
range, indicating the marked differences in Delta and Theta frequency bands. 
 
SVM Model Development and Training 
 
The model development was done on Jupyter Notebook using python programming and the SKlearn machine learning 
kit. First, the 80% of patients (77 patients, 70 AD + 7 Healthy) in the referenced study are imported and initialized in 
the Jupyter Notebook. This will be the training set, which comprises a vector of delta and theta absolute power for the 
training patients. Second, a vector of values (indicating 0=AD and 1=Healthy) corresponding to each tuple in the 
previous vector. This input data is given to 5 models, namely the DecisionTreeClassifier, KNeighborsClassifier, SVC, 
Logistic Regression, and VotingClassifier. Since an SVM is a supervised learning model, it takes into account the 
vector of values (patient’s diagnosis) to estimate a line that most accurately discriminates between AD and Healthy 
patients, known as a decision boundary.  
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Figure 9. Flowchart depicting the workflow for training and adjusting the SVM models.  
 
SVM Model Selection and Scoring 
 
Using the framework presented in Figure 11, each model was trained on the data. This consisted of using the vector 
of patient values (indicating 0=AD and 1=Healthy) to create a decision boundary to classify a patient with a certain 
absolute theta and delta powers as either AD or healthy. A statistical analysis was performed using the t-test to compute 
the p-values for AD and Health patients for the delta band. After each SVM model generated a distinct decision 
boundary based on the method of classification, we observed the hyperplanes created to determine which model had 
the clearest boundary with the given data set. This model will then be selected to classify the test data since it proved 
to be the SVM model with the highest classification accuracy.  

Volume 13 Issue 4 (2024) 

ISSN: 2167-1907 www.JSR.org/hs 11



   
 

   
 

Expected Results 
 
We expect the machine learning trained model will give an estimation of statistical significance whether SVM models 
trained on EEG data can be used to identify patients, namely AD vs. Healthy. In order to test the reliability and validity 
of our mode, we use six statistical measures, namely Sensitivity (recall), Precision, F1 Score, Accuracy, and Sensitiv-
ity. The calculation of each of the measures is done using a confusion matrix (Table 2). 
 
Table 2. Two by two table with corresponding formulas for recall (RC), precision (PC), F1 score and accuracy. 
 

Confusion Matrix 
  Predicted Values 
Actual Values Positive Negative 

True Positive (TP) False Negative (FN) 
False Positive (FP) True Negative (TN) 

 
Recall (RC): measures how often a machine learning model correctly identifies positive instances (true pos-

itives) from all the actual positive samples in the dataset. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑅𝑅𝑅𝑅) =
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 

 
F1 Score: The harmonic mean of a classification model's precision and recall. 
 

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗
𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 

 
Precision (PC): The accuracy of positive predictions (measures how many of all positive cases detected were 

true positives) 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑃𝑃𝑃𝑃) =
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 

 
Accuracy: Measures how often a machine learning model correctly predicts the outcome, whether classifying 

a positive or negative case 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹)
 

 
Our goal is to focus more on sensitivity of the model (recall / true positive rate / hit rate) which refers to the 

ability of the model to identify AD patients. We want to calculate the precision which measures the ratio of correctly 
identified AD patients over the total number of actual AD patients.  We also calculated F1 Score which is the weighted 
average of precision and recall. Finally, we want to compute the accuracy of the model which is the ratio of records 
that model identified correctly (AD and healthy) over the total record set. 
 

Results 
 
SVM Model Selection 
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In order to select the most accurate model, the absolute power for each electrode across the complete dataset (AD = 
80 and Healthy =12) was created as a comma separated file (csv). Since each model requires data formatted in an x 
and y variable (for plotting), we took the calculated absolute delta and theta powers for each patient to input into a csv 
file. The data was then ingested by the python code for first training the model. We used several python packages in 
Jupyter Notebook, such as NumPy, SciPy, CSV, and Seaborn. In the program, we created separate testing and testing 
files to separate the respective patient pools. Using the SKlearn package for the machine learning models, the files 
were inputted into the program, creating a plot of the five models.  
 

 
 
Figure 10. Results of training the model on a 2-dimensional feature space using the C3 electrode for healthy (hollow 
dots) and Alzheimer’s (black dots) patients. The hyperplane separates the two clusters, and the X and Y axis represent 
the delta and theta values respectively. 
 

Each trained model also produced a scatter plot (Figure 10) that gives a visual representation of the trained 
models hyperplane. The visual analysis of the hyperplane provided insights into the stability of the model. In figure 
10, models such as the Kernel SVM highlight the instances of patients having Alzheimer’s, while leaving the rest of 
the plot to classify healthy patients. This is considered an unstable model, as it does well in classifying the training 
set, but when applying the testing set or any other patient data, the model would struggle to classify many patients 
correctly as healthy, as many don’t have the exact delta and theta powers. On the other hand, the Linear Regression 
model would be considered a stable model. This is because the hyperplane is a line, which is much more general than 
individually circling healthy patients. In addition, it also shows a clear discrimination between AD and healthy pa-
tient’s absolute powers. All the 19-electrode’s absolute power for the delta and theta frequency bands was processed 
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through the program for first creating the trained model and then running the corresponding electrode’s scoring dataset 
for computation of statistical accuracy.  
 

 
 
Figure 11. Results from the C4 electrode training the model on a 2-dimensional feature space showing that the linear 
regression model represents the hyperplane of best fit given the inputted patient data from healthy (hollow dots) and 
Alzheimer’s (Black dots) patients 
 
SVM Model Results 
 
Among the SVM models used, the hyperplane created by the linear regression model proved to be the best fitting and 
the most stable for the given dataset (Figure 10 and 11). The linear regression trained models for each electrode were 
then fed the scoring dataset (AD = 10 and Healthy = 5) to produce the results of the scored model with 0 = AD and 1 
= Healthy. Table 3 shows the results of the linear regression model run on 10 AD and 5 Healthy patients across all 19 
electrodes. Patients AD_1, AD_2, AD_3, AD_4, AD_6, AD_7, AD_8, AD_9, and AD_10 was scored correctly across 
all electrodes. Only C3, C4, and F3 were able to correctly identify patient AD_5. For healthy patients, only C3, C4, 
and F4 consistently produced high accuracy, except for H_2, which was incorrectly forecasted for all electrodes. 
 
Table 3. Results of linear regression model scoring across all 19 electrodes, for 10 AD and 5 Healthy patients.  
 

Electro
de 

AD
_1 

AD
_2 

AD
_3 

AD
_4 

AD
_5 

AD
_6 

AD
_7 

AD
_8 

AD
_9 

AD_
10 

H_
1 

H_
2 

H_
3 

H_
4 

H_
5 

C3 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 
C4 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 
Cz 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 
F1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
F2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
F3 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 
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F4 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 
F7 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
F8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Fp1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Fp2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Fz 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 
O1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
T3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
T4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
T5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
Table 4 shows the summary statistics and accuracy calculations for all 19 electrodes, using the results from 

table 3. The first 4 columns correspond to the core statistical metrics, including True Positive (TP), True Negative 
(TN), False Positive (FP), and False Negative (FN). Using these raw metrics, we then calculated the Sensitivity, Spec-
ificity, Precision, F1 score, Accuracy, True Positive Rate (TPR), and False Positive Rate (FPR) in Microsoft Excel, 
using their respective equations. Table 4 depicts these results in percentage form, color coding the metrics based on 
the electrode’s performance. Since all models performed relatively well in detecting AD cases (>90% sensitivity), the 
color coding was done based on specificity. Green means the model’s specificity was >60%, yellow corresponds to 
>=20%, and red means that the model performed poorly with <20% specificity. As demonstrated, the C3, C4, and F3 
electrodes performed the best, with overall high specificity metrics, while electrodes such as O1 and O2 performed 
poorly.  
 
Table 4. Summary statistics and accuracy metrics computed for all 19 electrodes.  
 

Electrode TP TN FP FN Sensitivity Specificity Precision 
F1 

Score Accuracy TPR FPR 
C3 9 3 2 1 90% 60% 81.8% 86% 80% 90% 40% 
C4 10 3 2 0 100% 60% 83.3% 91% 87% 100% 40% 
Cz 9 1 4 1 90% 20% 69.2% 78% 67% 90% 80% 
F1 10 1 4 0 100% 20% 71.4% 83% 73% 100% 80% 
F2 10 1 4 0 100% 20% 71.4% 83% 73% 100% 80% 
F3 9 3 1 1 90% 75% 90.0% 90% 86% 90% 25% 
F4 10 2 3 0 100% 40% 76.9% 87% 80% 100% 60% 
F7 10 1 4 0 100% 20% 71.4% 83% 73% 100% 80% 
F8 10 1 4 0 100% 20% 71.4% 83% 73% 100% 80% 
Fp1 10 1 4 0 100% 20% 71.4% 83% 73% 100% 80% 
Fp2 10 1 4 0 100% 20% 71.4% 83% 73% 100% 80% 
Fz 9 1 4 1 90% 20% 69.2% 78% 67% 90% 80% 
O1 10 0 5 0 100% 0% 66.7% 80% 67% 100% 100% 
O2 10 0 5 0 100% 0% 66.7% 80% 67% 100% 100% 
P3 10 0 5 0 100% 0% 66.7% 80% 67% 100% 100% 
P4 10 0 5 0 100% 0% 66.7% 80% 67% 100% 100% 
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Pz 10 0 5 0 100% 0% 66.7% 80% 67% 100% 100% 
T3 10 2 3 0 100% 40% 76.9% 87% 80% 100% 60% 
T4 10 1 4 0 100% 20% 71.4% 83% 73% 100% 80% 
T5 10 0 5 0 100% 0% 66.7% 80% 67% 100% 100% 
T6 10 0 5 0 100% 0% 66.7% 80% 67% 100% 100% 

 
The results the 19 electrodes are summarized in figure 12, which shows the relative accuracies of each elec-

trode depicted in the 10-20 EEG system. The color coding is based on the previously defined green, yellow, and red 
categorization of the specificity of the model. It is noteworthy that each of these three electrodes is located on the 
Central and Frontal lobe of the brain, which are the affected areas in cases of early to mild Alzheimer’s disease. 
 

 
 
Figure 12. The figure shows the performance of each electrode, demonstrated on the EEG headset map.  
 

The Receiver Operating Characteristic (ROC) plot is a graph as shown in figure 13 plots the performance of 
the linear regression model across all 19 electrodes. The X-axis shows the false positive rate (incorrectly classifying 
patients as AD), while the Y-axis shows the true positive rate (correctly classifying patients as AD). As demonstrated 
in ROC plot in figure 13, the C3, C4 and F3 electrodes had a false positive rate below 50%, which is considered an 
acceptable result. The other 16 electrodes had higher than acceptable false positive rates, with the highest being the 
O1 and O2 electrodes. 
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Figure 13. The figure shows the ROC plot for all 19 electrodes.  
 

Table 5 shows the specific results for the best performing electrodes, including C3, C4, and F3. The classifi-
cation table shows that on average, each electrode had 9-10 true positive cases and 2-3 true negative cases. False 
positives and negatives were a total of 3 on average. This means that for the best performing electrodes, the linear 
regression model had high performance in cases where the patient has AD, whereas it had a poor performance on the 
healthy patients, giving almost an equal number of false positives. This still averages to an overall high performance, 
as in the testing set, there is a greater number of AD than healthy.  As stated previously, we calculated the four-
accuracy metrics, which are shown in the performance table. Based on the >=90% recall (sensitivity) and >=60% 
specificity, these three electrodes were considered to have the highest performance. However, while each model 
achieved a high sensitivity, C4 had the highest overall accuracy in classifying patients with 87%.  
 
Table 5. Results of contingency table analysis and linear regression for model performance using data from the C3 
and C4 electrodes.  
 

 Classification (N) Performance (%) 
Electrode TP FN FP TN Recall Precision Specificity Accuracy 

C3 9 1 2 3 90 81.8 60 80 
C4 10 0 2 3 100 83.3 60 87 
F3 10 0 3 2 90 90 75 86 

 
Note: TP= true positive; FN= false negative; FP= false positive; TN= true negative; N= number observed of 

15 and C4 electrodes.  
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Discussion 
 
The results of our model training demonstrated that linear regression is the best fitting model with the given data. 
Hence, Logistic Regression was selected as the SVM model of choice for further scoring. From the SVM model’s 
classification of the test data, it is clear that the statistical measures used to score the model demonstrate that SVM 
models trained on EEG data can reliably be used to identify patients, namely AD vs. Healthy.  

In clinical practices, doctors must discriminate between patients suffering from Alzheimer’s disease from 
patients with other types of dementia, cognitive impairment, or other conditions. AD is consequently difficult to di-
agnose and differentiate without the use of cerebrospinal fluid (CSF) biomarkers or single-photon emission comput-
erized tomography (SPECT-scan).  
 Alzheimer’s Disease detection today is limited to the late stage by which time the treatment options are 
limited, and quality of life is poor. Additionally, the misdiagnosis of Alzheimer’s has become a costly issue. Patients 
with prior AD diagnosis use substantially more unsuitable medical services approximately $9,500 - $14,000 annually 
until their diagnosis of related dementias (Hunter et al., 2015).  Making EEG-based early detection of AD useful, 
despite coming with some limitations. First, current diagnosis of Alzheimer’s disease -either using invasive methods 
or EEG data - is conducted by researchers: data is analyzed using human interpretation, which is subject to human 
error and misdiagnosis. Second, most publications are based on relatively small databases, containing EEG data for 
approximately 20 people per study. Small sample sizes limit the accuracy of a supervised learning model such as the 
SVM since it is trained on data with little variation. Third, many studies are limited in the number of relevant features. 
EEG data needs to be taken from certain electrodes over a relevant frequency band to be fed into a supervised learning 
model rather than all EEG data collected, which limits the amount of data the model can be trained on and eliminates 
frequency bands which could potentially show signs of AD, since the disease has varying effects on individuals.  

The present study overcomes such limitations and eliminates the need for human interpretation of EEG-data 
using a supervised learning model. Our research analyzes a bigger database of 93 patient EEG recordings, in real 
clinical conditions. The SVM model uses all EEG features extracted from patients for clinical diagnosis of AD. To 
the best of our knowledge, no study thus far has carried out AD diagnosis using an SVM model on a medium EEG 
database, considering all the given EEG features (of the 10-20 system).  

The novel approach presented in the paper has potential limitations. We have developed the tool using only 
80 AD and 12 Healthy patients. Also, the EEG data is limited to only eight seconds. The data limitation in this study 
impacts the ability of the model to assess its accuracy in a real-world setting. Also, the model will benefit from di-
mensionality analysis and reduction techniques like Principle Component Analysis (PCA) applied on all frequency 
bands (∆, ∅, ß,  and α) done across individual or sets of electrodes namely F: Frontal, C: Central, T: Temporal, P: 
Parietal; O: Occipital. Since for AD patients, the signals on left and right hemispheres can vary, PCA analysis can 
help identify the best set of frequency bands to be used in the model training (Greenacre et al., 2022). 
 

Conclusion 
 
The proposed approach in this paper offers advantages over the current clinical based diagnosis of Alzheimer’s dis-
ease. Today, AD diagnosis is performed at late stages, limiting treatment options and effectiveness. There is no clinical 
screening option available for non-invasive and low-cost early-stage AD detection. Having AD screening available at 
primary care clinics during a person’s yearly visit has the potential to transform the approach to AD diagnosis and 
treatment providing patients precious time to prepare for the monetary effects of AD and the effects on a person’s 
ability to live independently 

In our framework, we developed a simple two-step approach to AD screening. Step one involves collecting 
EEG data for a period of less than 2 minutes per patient. This data is then fed to a cloud-based AD identification 
system that uses a Support Vector Machine model pre-trained on historical AD patients. In less than 10 seconds, the 
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system predicted the likelihood of patients having AD symptoms. Using this real-time result, a clinician can perform 
further diagnosis using existing methods to help confirm the diagnosis and prescribe an optimized treatment plan.  
Although our initial study used a small set of data, nevertheless, it demonstrates the scalability, feasibility, and accu-
racy of using a machine learning model.  The proposed novel approach to AD detection using Support Vector Machine 
Models applied to EEG data provided 90% sensitivity and 80% specificity. Since EEG is an FDA approved and low-
cost device, electrode-based data collection tool, detecting patients' early stages of their AD can lead to intervention 
and more effective treatments.  

In future work, we will use more candidate electrodes besides C3, which will provide more discriminatory 
factors between AD and healthy patients. Additionally, additionally training and testing the primary SVM model on 
patients with cognitive impairment or other pathologies, patients can be more accurately diagnosed and treated ac-
cordingly. 
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