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ABSTRACT 

Our goal was to find expected pressure around different wingtip shapes to predict vortice behavior. This project fo-
cused on aerodynamics, specifically the location where high and low-pressure air mixes over a lifting surface. High-
pressure air mixes with the low-pressure air at the wingtip of a plane creating vortices that cause drag, which wastes 
fuel and slows down the aircraft. Not only is this bad for the environment, but it increases the cost of flight and affects 
the distance that larger planes can fly ahead of smaller planes due to wake turbulence. As planes have gotten lighter, 
faster, and safer, the issue of wingtip vortices and drag has continued to be a problem. The approach we used to answer 
this problem was to select an applicable data set using continuous machine learning models and later, discrete models 
to predict a pressure coefficient above the wing. We combined multiple datasets from the same research paper created 
by NASA to have numerous factors for the machine learning model to predict. As a result, we produced accurate static 
pressure predictions with 80% to 90% accuracy. Even more accurate were our model recall scores which were within 
99%. As a result of the work done on this project, accurate predictions of expected pressure over an airfoil are achiev-
able. With only a few input variables about speed and dimensions, an accurate static pressure can be found.  

Introduction 

As aviation technology advanced from the first powered aircraft, designers continued to strive to design faster vehicles. 
For military aircraft post World War 2, speed was a top priority, as it was for commercial aircraft with the dawn of 
the jet age. These high-speed planes are designed to transport people and cargo across the globe. However, the effects 
of wingtip vortices contribute to drag, threatening to slow down planes. By choosing to use more powerful engines, 
the core of the issue was fixed. Quicker planes meant increased fuel loss. During the 1970s, a design focus trend began 
that stepped back from increasingly fast planes, and instead looked at making smaller incremental improvements to 
efficiency and cost. More efficient engines, lighter materials, and other designs to help with aviation efficiency have 
since been developed. In 1977, NASA, USAF, and Boeing worked on a project to add winglets to a KC-135 aircraft 
(Fig 1). These winglets proved themselves with testing, as there was a 7% increase in lift-to-drag ratio. In the late 
1990s, Boeing began using these winglets on existing aircraft to increase their efficiency. In the coming years, winglet 
designs were implemented into most future aircraft designs. In 2010, it was reported that Southwest Airlines 737-700 
planes saved 100,000 gallons of fuel per year as a result of these winglets. Winglets work by creating a forward lift 
component on the tip of a wing. Without them, different pressure air from above and below mixes to create powerful 
vortices. This vortex then travels above the wing pushing the component of lift backward, thus creating drag. With a 
winglet that is angled inward,  the air that flows over the winglet generates forward lift  
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Figure 1. KC-135A fitted with winglets. [9]NASA, O., 1979, KC-135A in flight - winglet study, In Flight.  
 
 For a winglet to be efficient, it must be designed to generate lift in a forward direction.  However, a winglet 
is perpendicular to the fuselage and thus it generates lift towards the fuselage which is both useless and efficient. 
However, the wingtip vortices that are created change the direction of airflow over the wing, causing the direction of 
lift to be forward which is desirable. As a result, the goal should not be to fully remove the wingtip vortices, but rather 
to understand how the vortices will behave to construct a preferable winglet. The type of data used to predict the 
wingtip vortices created is continuous numerical data. Pressure around and over a lifting surface can be measured as 
a coefficient. Velocity at different points is also measured numerically. This makes predicting pressure possible using 
machine learning algorithms.  
 

Background  
 
In the past decade, much work has been done in the study of wingtip vortices. The most common approach used for 
these studies has typically been to experiment with wingtip shapes and angle of attack inside a wind tunnel, with flow 
visualization. These wind tunnels work by moving air at high speed over the object being tested. To gather data, forces 
can be measured with sensors attached to the object. Information about the airflow can be found using a variety of 
other techniques; using smoke injectors(Fig 2) and laser slits, 2d image planes visualizing airflow can be created. To 
measure pressure, additional sensors can be added to various sections of the wing.  
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Figure 2. Flow visualization inside a wind tunnel demonstrating wingtip vortices formation. [10]Dale, B. F., 2007, 
Cessna 182 model-wingtip-vortex.  
 

Experiments specific to wingtips have been done by exploring the addition of wingtips of different shapes. 
These experiments gather significant data for those specific shapes, but if attempting to use the information to control 
vortices or something equally specific, much trial and error is required. An Experimental Study and Database for Tip 
Vortex Flow From An Airfoil(K.B.M.Q. Zaman, Amy F. Fagan, and Mina R. Mankbadi) looked at different wingtips 
and winglet designs on a NACA0012 airfoil. Many images and numerical data were found from the experiments with 
information about vortex creation.  

Using CFD software, it remains challenging  to find the most optimal winglet and wingtip designs. Each test 
of the design is computationally heavy, making it difficult to test out a sizable amount of designs. Aircraft Winglet 
Design Increasing the aerodynamic efficiency of a wing (HANLIN GONG ZHANG, ERIC AXTELIUS) used CFD 
software to test different common winglet shapes. Due to the computational strain per simulation, only 9 shapes were 
tested. Many more specific designs that exist in between these could be more efficient. 
 For these reasons, implementing a machine learning algorithm to predict airflow has many advantages. With 
non-discrete data, all possible inputs can be predicted and instead of testing just a few shapes, all possibilities can be 
tested. Using machine learning for this has some drawbacks. Particularly for more complicated shapes, it is difficult 
to have an algorithm capable of predicting results, unless a vast amount of data is collected for training. This is the 
problem that the application of machine learning is aiming to fix.  
 

Dataset 
 
Our dataset was created by NASA. As a part of the research paper: Turbulence Measurements in the Near Field of a 
Wingtip Vortex; Jim Chow, Greg Zilliac, and Peter Bradshaw), a NACA 0012 wingtip was tested inside a wind tunnel 
at NASA Ames. (Fig 3) Using various methods, they measured for differences in speed and pressure around the 
wingtip.  
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Figure 3. Schematic showing measurements for data collection. [7]Chow, J., Zilliac, G., and Bradshaw, P., 1997, 
“Turbulence Measurements in the Near Field of a Wingtip Vortex,” NASA Technical Reports Server [Online]. Avail-
able: https://ntrs.nasa.gov/api/citations/19970011348/downloads/19970011348.pdf. [Accessed: Dec-2023]. 
 

Static pressure and pressure at the wingtip were measured using three wire probe apparatuses. X, Y, and Z. 
Coordinates were measured using force measurement devices. The NACA 0012 wingtip segment was placed inside 
an open circuit wind tunnel with a width of 32 inches and a height of 48 inches. (Fig 4)  
 

 
 
Figure 4. Diagram of wind tunnel design. [7]Chow, J., Zilliac, G., and Bradshaw, P., 1997, “Turbulence Measure-
ments in the Near Field of a Wingtip Vortex,” NASA Technical Reports Server [Online]. Available: 
https://ntrs.nasa.gov/api/citations/19970011348/downloads/19970011348.pdf. [Accessed: Dec-2023]. 
 

The data collected consisted of two separate .dat files. The first contained X, Y, and Z columns with meas-
urements as well as speed data at different parts of the wingtip: u/uinf, v/uinf, and w/uinf. The other file contained the 
same X, Y, and Z data, and then Cp, Static, and Cp, total pressure measurements. Once combined into a single dataset, 
the data was continuous numerical data. 7,279 columns of data exist in the dataset. This was slightly smaller than ideal 
but provided us with enough data from which to work. (Fig 5) 
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Figure 5. Screenshot of dataset preview.  
 

Methodology / Models 
 
The programming work was input using Google Colab. To use machine learning algorithms on the dataset,  we first 
organized the data into one readable file. The two separate files were joined using a simple Python script. Because 
both datasets contained the same XYZ data, that column was dropped. To visualize the data, we used the Python 
library: Seaborn, to create visualizations. The first data visualized was Cp, Statics relationship with X, Y, and Z values. 
(Fig 6) 
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Figure 6. Cp Static values for X, Y, and Z values. 
 

Data was also described using built-in Python “describe” functions. (Table 1) This showed mean, standard 
deviation, minimum values, percentiles, and maximum values for the entire data set.  
 
Table 1. Results from the “describe” function. Df.describe values 
 

 X Y Z u/Ui
nf 

v/Uinf w/Uinf Cp, static Cp, total 

Count 7279 7279 7279 7279 7279 7279 7279 7279 
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Mean -4.960024 11.082556 10.0008
72 

0.97
2867 

-0.007056 0.06604 -0.298303 0.868165 

Std 21.932157 5.421255 6.97635
7 

0.16
4826 

0.298030 0.315727 0.553720 0.299657 

Min -54.703000 0 0 0.00
78 

-0.971 -1.032 -3.649 -0.761 

25% -14.431000 7.632 5.415 0.92
8 

-0.191 -0.035 -0.438 0.952 

50% -0.723000 10.052 7.761 0.96
8 

-0.025 0.098 -0.125 0.996 

75% 11.568000 14.2435 13 1.03
4 

0.104 0.23 0.027 1.003 

Max 32.297000 23 28 1.77
2 

1.052 1.02 0.3130.31
3 

1.053 

 
Once we had a solid understanding of the data, we applied different machine-learning models. Data was split 

into training and testing data, as well as into the X vector and Y output. The Y output we aimed to find was Cp, Static, 
as it represents the behavior of the vortices over the wing, and all the rest of the data was put into the X vector. The 
data was split so that the testing data was 20% of all the data. Due to the limited amount of data, we chose to use as 
much data as possible for training, while still leaving enough for testing. After splitting the data, we had 5,823 rows 
of data for training and 1,456 rows for testing. 

After preparing the data for the algorithms, we imported the Python library: scikit learn to apply these models. 
Throughout the entire research, we used both continuous numerical value models as well as discrete numerical value 
models.  The first model applied was linear regression.  
Linear regression works by finding a line of best fit for X vector data. This is done by taking training data and finding 
a line of best fit by minimizing the residual sum of squares. The second continuous model implemented was the 
random tree regression model. This model works by creating and comparing decision trees for the data that give the 
most accurate results. Specifically, it creates trees on smaller sections of the data and then compares them to find an 
average most efficient tree. For our implementation, we used the hyperparameter of a max depth of the trees being 2 
levels. Another model that was applied to our data was support vector regression. This model works similarly to linear 
regression, but instead of finding a line of best fit, it finds a multidimensional hyperplane that represents the best fit 
for the data. We also applied a decision tree regressor model to our data which finds a decision tree that predicts the 
outputs. The last continuous data model that we used was the ridge regressor. We also experimented with using dif-
ferent hyperparameter values of alpha. We ended up graphing the accuracy from these different values to find the 
most optimal one. (See results section for outcome [Fig 10]) 

For our discrete model implementation, we first had to make our data contain only discrete Y outputs. To do 
this, we sorted Cp, Total pressure values into 2 groups: either 1 or 2. We sorted by finding the average value of all 
pressure values and sorting them into values above it and values below.(Fig 8) 
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Figure 7. Screenshot of data splitting code 
 

After sorting, we were able to implement discrete machine learning algorithms. We ended up only using 1 
discrete method: logistic regression. Logistic regression works by finding a curve that fits in between discrete data 
points.  
 

Results and Discussion 
 
After implementing all of these models for our data, we evaluated their ability to predict pressure data using a variety 
of methods. For the continuous models, we used the scikit Python command: mean_absolute_error. This compares 
the Y testing data answers with the prediction Y values the model gave; the lower the result, the more accurate the 
models' predictions were.  
 

 
 
Figure 8. Mean absolute error results for the models tested. 
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For the continuous data ML models, the decision tree regressor performed the best, while the basic linear 

regression model performed the worst. The mean absolute error for all the models stayed under 0.2; working to predict 
static pressure based on only a few input variables, this is a satisfactory and positive result.  

The second worst-performing model was the ridge regression model. To achieve slightly better results, we 
experimented with different hyperparameter values for alpha. Specifically, we ran through all alpha values between 0 
and 1000. There was a visible correlation between the alpha values and the models’ performance however, the scale 
was so small that the difference would be negligible. (Fig 10) 
 

 
 
Figure 9. Graph of alpha values(x) and their effect on mean absolute error output(y) 
 
 The logistic regression model trained on the data performed well. To understand this performance, we utilized 
several different methods. We used scikit tools: accuracy, precision, recall, and F1 score commands, to compute the 
effectiveness of the model.  

These scores are calculated using the following formulas: (Fig 11) 
 

 
 
Figure 10. Formulas for precision, recall and accuracy scores. 
 

𝐹𝐹1 = 2 ∗  (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)/(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) 
 

The formula for F1 score.  
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The precision of the model was 0.81, which is a favorable result. The recall score achieved by our model was 
0.9982, and the F1 score was 0.893. After finding these results, we created a confusion matrix (Fig 13) to represent 
false positives, false negatives, correct positives, and correct negatives. This gave us a good visualization of the per-
formance of the model.  
 

 
 
Figure 11. 
 

As shown from these results we see that out of 1,169 values whose correct value was 1, the model incorrectly 
identified only 2. For predictions where the correct value was 0, the model did poorly, falsely labeling 263 out of 287 
as 1, instead of 0. This is a major disadvantage of our logistic regression model.  

Overall the models that used continuous data performed better than the logistic regression model, this is most 
likely because the data is a measurement of pressure, and so not inherently categorical. Our models did have some 
sources of error due to the size of the dataset.   Considering the complexity of what the model is predicting,  with only 
7,000 approximate values, the quantity is not enough to train it comprehensively. Another issue is that the dataset we 
used is accurate for only the specific NACA0012 airfoil. If we were to test the models with a different airfoil, it would 
not be able to predict as well.  

To solve some of these issues, future research could be achieved by collecting significantly more data using 
CFD (computational fluid dynamics) software, or wind tunnel testing over a long period. In addition, future data 
collection could be done for a vast amount of NACA airfoils, or even by documenting the dimensions of the chord 
length, camber line length, thickness, and profile. With these additional X vectors, the model could be trained to work 
on a variety of airfoil types.  
 

Conclusions 
 
As a result of our research, we were able to successfully apply and train both continuous and categorical/discrete data 
for the Turbulence Measurements in the Near Field of a Wingtip Vortex data collection created in 1997. Out of all the 
models used, the best performing was the decision tree regressor model. It performed with a mean absolute error of 
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0.0299. All of the models we trained were able to predict the static pressure of airflow over an airfoil to some degree. 
Knowing this information from speed and position data could be used to predict that path of wingtip vortices formed. 
Without the need to test each configuration, and with the ability to find precise values, optimal winglet positioning 
designs could be created. Since winglets' usefulness and performance is based on how they direct the wingtip vortices 
to create a forward lift component, this would be a helpful tool. If future research was to be done using machine 
learning to accomplish similar goals, collecting significantly more data, as well as testing on a huge variety of NACA 
airfoil designs could lead to a more versatile and applicable model. Our model works as a good demonstration of the 
usage of machine learning to predict airflow, but is not suitable for physical testing and usage.  
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