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ABSTRACT 

Over the last decades, floods have become the most common and deadly natural disaster on the planet. While 
many countries currently lack effective early warning systems and alerts(India, Malaysia, South Asia etc.). 
Flood forecasting is a very exploratory project because there is substantial peer-reviewed evidence that flood 
early warning can prevent between 30% to 50% of both fatalities and economic harms(Perera et al.). Existing 
challenges in flood forecasting include how to establish relations between more variables, extend the lead-time 
for actual warning with improved accuracy, and how model-dependent(process-based) and model-independ-
ent(data-driven) strategies can be balanced to magnify the long term predictive potential of deep learning mod-
els. Given the competitive performance deep learning models have shown in temporal variation modeling, tem-
poral dependency learning, and multivariate representation, this paper aims to explore the potential of deep 
learning model in forecasting floods and focuses on the adaptation and training of the deep learning network, 
namely AdapFAN, for flood forecasting. Building on the data-driven basis, AdapFAN incorporates process 
algorithms(taking multi periodicity, interdimensional, and intradimensional dependencies into account) in sep-
arate paths to further its predictive length and reliability. Specifically, AdapFAN adopts TimesNet to transform 
complex 1D time series into multiple 2D tensors representing interperiod and intraperiod temporal variations, 
tackling the representation limitation of 1D series. Building on that, AdapFAN adopts channel independence to 
avoid the loss due to the average of multi periodicity between different dimensions. To take the influence of 
dimensional dependencies into account, dimensions are aggregated into 3D space and allow conv3d to analyze 
the hidden inner relations between multivariates. Using AdapFAN, this project achieves reliability in predicting 
extreme riverine events in ungauged watersheds at up to a 4-day lead time(96 timestamp) that is similar to or 
better than the reliability of nowcasts (0-day lead time) from a current state-of-the-art global modeling system. 

Introduction 

Flood is a climate-related natural disaster. It is defined as an overflow of water over dry lands, usually followed 
by fatalities and economic damage. According to the international disaster database, flooding occurs more fre-
quently than all other types of natural hazards across the globe, and accounts for 39% of all disasters arising 
from natural hazards since 2000, with >94 million people affected worldwide every year(Guha-Sapir et al., 
2018). However, substantial peer-reviewed evidence stated that flood early warning can prevent between 30% 
to 50% of both fatalities and economic harms(Perera et al.). According to WMO, “Recorded economic losses 
linked to extreme hydro-meteorological events have increased nearly 50 times over the past five decades, but 
the global loss of life has decreased by a factor of about 10, thus millions of lives are being saved”("Early 
Warning"). When the rate of runoff-volume exceeds 1000 𝑚𝑚3/𝑠𝑠, the likelihood of flood is likely to take place. 
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Aim of this project is to forecast floods in 4-days lead time(96 timestamp) with improved accuracy 
measured by mse and mae. However, it’s hard to find much reference on streamflow forecasting using hydro-
logical analyzing models(available models in this aspect are limited). Traditional hydrological models including 
conceptual models, physically based models, and statistical models degrade significantly in performance when 
calibrated for multiple basins together instead of for a single basin alone. This inability to transfer or extrapolate 
the hydrologic information from one to another(e.g. From gauged to ungauged watershed) indicates the problem 
that model-dependent methods with a convoluted process network following pre-assumed patterns can limit a 
model’s scalability.  

Recent studies cast doubt on the effectiveness of transformers in addressing forecasting tasks by com-
paring its performance with linear models or vanilla LSTM. Transformers’ problem with low scalability, mean-
ing it can perform well in one scenario but usually perform very poorly or far less competent in another scenar-
ios, are probably due to the same reason – overly process-dependent (being overly process-dependent results in 
the failure to learn and encode regional differences in catchment characteristics and translate it into appropri-
ately heterogeneous hydrologic behavior uses). Hence, my selected base model in this project, namely 
Timesnet, is a task general deep learning method not following transformer architecture and is showing strong 
adaptabilities and competence in all tasks including long term, short term forecasting, anomaly detection, im-
putation, and classification.  
 

 
 
Chart 1. Model performance comparison: As a foundation model, TimesNet achieves consistent state-of-the-
art performance on five mainstream analysis tasks compared with other customized models(Wu et al.) 
 

On the other hand, we do need certain process representations when dealing with long term forecasting. 
Unlike short term forecasting, longer prediction needs stronger structural information that is extendable and is 
considered inherent in the data feature. In this respect, time series specificities should be taken into account. 
This includes multivariate and temporal variations.  

Multivariate time series refers to data that involves multiple variables (e.g. streamflow rate, precipita-
tion, slope, loam, ET, etc.) and is influenced by the relationship between variables. AdapFAN, by reshaping 
original 1D time series into 3D space, with length(x) representing the number of timestamps, width(z) repre-
senting the number of features in one dimension, and height(y) displaying the number of dimensions enhances 
the visual representation of multiple dimensions(multivariates, its respective features, and timestamp are holis-
tically rearranged for analyzing). Building on that, by making use of 3D convolutional neural network’s com-
petence in addressing high dimensional visual tasks, intradimensional(between multivariate) dependencies can 
be coherently processed.  
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For temporal variations, it refers to the common features a time series data possesses. It includes peri-
odicity(this further introduces inter-period, intra-period relationship, and ), trend, and autocorrelation. To pre-
vent the setting of too many predefined patterns that may result in scalability reduction of my model, I incor-
porate only the most long-term-forecasting-related time series specificity, multi periodicity(more implicit rela-
tive to trend, more variable, and exist in the long term relative to autocorrelation), as the process representation. 
I designed AdapFAN which uses TimesNet as backbone and has improved its accuracy by proposing channel 
independence for distinct variates. In this way, multi periodicity of the original 1D time series is decomposed 
into its top k prominent period lengths(which can be different for distinct variates). Reshaped and padded based 
on different period lengths, a set of 2D tensors are produced to show not only temporal variations of different 
period length, but also the simultaneous representation of interperiod and intraperiod series.  

Technically, based on above motivations, my contributions are summaries in three folds: 
● Due to the importance of scalability for hydrologic forecasting models, I selected the task general time 

series method, namely TimesNet, as the backbone of AdapFAN. 
● Visual representation of multivariate in higher dimensions: variates, features, and timestamp are ho-

listically processed using 3D convolutional neural networks to achieve holistic interdimensional rep-
resentation of variants, features, and timestamp. 

● Modeling temporal variations in three aspects as process representations: Multi periodicity, interper-
iod, and intraperiod variations derived from multiperiodicity are decomposed to provide structural 
reference for long term forecasting. 

 

 
 
Chart 2. Framework of the project showing all subsections of the procedure 
 

The framework of my overall progression is shown in chart 2. By training AdapFAN on WaterBench 
data set using meteorological time series data and static catchment attributes, AdapFAN achieves the lowest 
mse at 0.474599 and lowest mae at 0.146267. This project was able to significantly improve performance com-
pared to a set of several different hydrological benchmark models and can send out signals whenever the rate 
of run-off volume exceeds 1000 m^3/s.  
 

Related Work 
 
Model-Dependent and Model-Independent Methods for Flood Forecasting 
 
Model-dependent methods use process-based models. These models usually follow predefined patterns and 
physical assumptions that give specific algorithms to data processing. To give some examples, Samaniego pro-
posed the multiscale parameter regionalization (MPR) method(L et al.), which establishes the model and a 
regionalization scheme by regressing the parameters of a set of transfer functions that are predefined and map 
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the parameters of hydrological models to ancillary data, such as soil properties. A conceptual model trained on 
eleven catchments was calibrated by Seibert and regressed on the available features of the catchments(J). When 
compared to seven other catchments, the regionalization capacity's stated performance varied from a Nash-
Sutcliffe Efficiency (NSE) of 1.42 to 1.76 (relatively high, indicating a low reliability)(J). In that sense, most 
cases using model-dependent methods rely on prior knowledge of the hydrological system and hence can hardly 
be adapted to the appearance of regional differences. Or to put it in a more common sense way, specificity can 
be an indication of low elasticity and may lead to rigidity in long term forecasting regardless of variable influ-
encers.  

Model-independent methods use data-driven models(this is usually referred to as black box). Most of 
the published papers that are based on data-driven approaches use vallila long-short-term-memory(LSTM) and 
its variants. Very few papers explore other RNN-based deep learning models including gated recurrent 
unit(GRU) and sequence to sequence(S2S) network as flood forecasters, which indicates there has not had much 
development other than these few vanilla foundations(LSTM and RNN models). In addition, despite its ad-
vantage in short term prediction, the existing problem for these process based methods is its low accuracy in 
long term forecasting. Even Nowcast, the current state-of-art model for flood forecasting using LSTM, has 0 
lead time(only archives a few hours ahead, not even a day).  
 
Temporal Variation Modeling 
 
As one of the time series specificities, temporal variation modeling has been well explored. Conventional mod-
els assume that temporal variance adheres to predetermined patterns. like Holt-Winster, ARIMA, and Prophet. 
However, the actual usefulness of these classical approaches is limited since the variations of real-world time 
series are typically too complicated to be covered by these established patterns. However, deep learning meth-
ods like RNN-based models, TCN (temporal convolutional network), and MLP (Multilayer Perceptron) are 
available for temporal modeling. Notably, this work takes into account the temporal 2D-variations based on 
decomposed periodicity, which are not taken into account by any of the above approaches.  

Furthermore, transformers are being passionately explored in this aspect. Primary approach for trans-
former-based forecasting models to achieve better temporal variation modeling is by enhancing self-attention 
to a sparse version. (1) locality-sensitive hashing attention (used in reformer); (2) multihead attention; (3) 
memory-efficient attention; (4) hashing attention; (5) multo-round LSH attention (used in reformer); and (7) 
prob sparse attention (used in informer). These models still use the point-wise representation aggregation, but 
performance is much enhanced. Because of the sparse point-wise connections, they will therefore forfeit infor-
mation utilization in the process of improving efficiency, creating a bottleneck for long-term time series fore-
casting. My project instead of continuing the use of sparse representation of time series, series level modeling 
is proposed. AdapFAN is carefully designed regarding the holistic representation of 1D time series reshaped 
into higher visual dimensions (2D for temporal variation and 3D for multivariate) and processing using effective 
tools. 
 
Multivariates Modeling  
 
Not much has been done or no significant achievement in this aspect yet due to the inherent complexity of 
capturing multivariate dependencies. Multivariate modeling has to take extensive assumptions and correlated 
variables into account, and by introducing one more variable, this may result in double the number of extra 
related factors, hence its difficulty increases exponentially. However, I would consider a novel method of data 
representation a beneficial approach to multivariate modeling. Since the convolutional neural network’s com-
petence in image processing shows the potential for holistic analysis of data, and if we embed 1D time series 
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to another spatial arrangement of higher dimensions that can present multivarients separately and simultane-
ously, better performance may be expected. 

In addition, channel design is concerned with the processing of variants. A multivariate time series is 
a multi-channel signal. Channel-mixing refers to the case where the input token takes the vector of all time 
series features and projects it to the embedding space to mix information. On the other hand, channel-independ-
ence means that each input token only contains information from a single channel. This was proven to work 
well with CNN (Zheng et al., 2014) and linear models (Zeng et al., 2022). 
 

Methodology 
 
The overall architecture of AdapFAN is shown in figure 3, which is an end-to-end method. AdapFAN contains 
two modules, one is Timesnet-based method supported with channel independence, fast fourier transform, and 
inception block determined through comparative experiment. The other one is 3D modeling for multivariate 
making use of 3D cnn. 
 

 
 
Figure 3. Module overview of AdapFAN(C denotes dimension, T denotes timestamp, P denotes period, and k 
are parameters set to be 5) 
 
Inter-Dimensional Dependencies Representation Using TimesNet: Transform 1D Series into 
A Set of 2D Tensors  
 
For a time series, what we see is just a graph of what it looks like when multiple sub-parts, including  periods 
of different lengths, overlap and influence each other in an implicit sense. This results in a time series that is 
inherently complex and difficult to extract features from. Timestamp possessing the same period length, time 
points are affected by both intraperiod and interperiod variations. Secondly, for each sub-components in the 
time series, the time points contained within them are affected not only by the neighboring time points pos-
sessing the same period length, but also by the variations of the neighboring periods, i.e. intraperiod and in-
terperiod variations, intraperiod variations can indicate short-term time patterns, and the interperiod variation 
can reflect the long term aspect. If multiperiodicity is not clearly decomposed, the time series as a whole can 
be assumed to have infinite period length. In that sense, prediction can only be based on the interaction between 
each neighboring timepoint, which is short term forecasting. While the long-term reliability would be extremely 
difficult to find.  

Based on the above time series specificities, two features that an effective forecaster have to possess 
are the ability to decompose entangled multi periodicity into multiple individual period lengths and operate 
interperiod and intraperiod processing. 2D tensors with different period lengths will display different inter and 
intra period variations and hence difference hydrological behavior. Therefore, the model needs to further trun-
cate the complex time series according to the top k period length, then interpret the inter and intra period future 
behavior.  
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Since it is difficult to capture intra- and inter-period variations simultaneously in one dimension (a 
long infinitely extended time-series with the time dimension being the x-axis), the time series are truncated into 
T/P short cuts with single periodicity based on learned C top k period lengths. They are then stitched together 
chronologically up and down to form a 2D representation (with T/P as the length, and P (all the time points 
contained in one period) as the width). The final result is k 2d temporal variations generated based on different 
period lengths. As a result, the ability to represent time series previously limited to 1d time series is tackled, 
and the learning of interperiod and intraperiod variations can be performed simultaneously. 
 

 
 
Figure 4. Mechanism of Timesnet architecture 
 

Based on an understanding of the multi-periodic nature of time series and the two forms of intra- and 
inter-period temporal interaction of a given period length, simultaneous analysis of three forms of temporal 
variation including point level, series level, and cross series level is achieved by reconstructing the original 1d 
time series into a set of 2d image according to learned  period length, which is a breakthrough in terms of 
visualization and task universality. 
 
Channel Independence  
 
We consider the following problem: given a collection of multivariate time series samples with lookback win-
dow L : (𝑥𝑥1, ..., 𝑥𝑥𝐿𝐿) where each 𝑥𝑥𝑡𝑡 at time step t is a vector of dimension M, we would like to forecast T future 
values (𝑥𝑥𝐿𝐿+1, ..., 𝑥𝑥𝐿𝐿+𝑇𝑇 ). Our model is illustrated in the figure below where the model makes use of the timesnet 
architecture. For the forward process, we denote a 𝑖𝑖 𝑡𝑡ℎ univariate series of length L starting at time index 1 as 
𝑥𝑥1:𝐿𝐿

(𝑖𝑖) = (𝑥𝑥1𝑖𝑖 , . . . , 𝑥𝑥𝐿𝐿𝑖𝑖 ) where i = 1, ..., M. The input (𝑥𝑥1, . . . , 𝑥𝑥𝐿𝐿 )  is split to M univariate series x (i) ∈ R 1×L, 
where each of them is fed independently into the TimesNet backbone according to our channel-independence 
setting. Then the timesnet backbone will provide prediction results xˆ (i) = (ˆx (i) L+1, ..., xˆ (i) L+T ) ∈ R 1×T 
accordingly. 
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Figure 5. Channel independence between dimensions to avoid the lose or interference of periodicity, 
Timesblock is the functioning unit of TimesNet 
 

Multivariate time series data is divided into separate channels. They share the same TimesBlock back-
bone, but the forward processes are independent. For the decomposition of multi periodicity, this project fast 
fourier transform(FFT). Through which, the time domain of the time series is transformed into the frequency 
domain. The formula is shown below where X[k] is the expression of a discrete series in the frequency domain, 
x(t) is the original discrete series in the time domain, k denotes the frequency index, N is the series length. 
 

 
 

Based on the amplitude values of each frequency component in the frequency domain, the largest k 
amplitude values are taken. These amplitudes each correspond to one frequency index and are indicated by the 
magnitude to occupy the k highest significance(prominence) over the other existing periods of the time series. 
Only k(in my code k is set to be 5) most significant frequencies are taken to avoid noise and overanalyzing (to 
the extent that some are meaningless) of periodicities beyond the original time series. From the values of these 
k most significant frequencies, their corresponding period length can be found using the formula below, where 
p denotes period length, T denotes timestamp, and f denotes frequency. 
 

𝒑𝒑𝒊𝒊  =  
𝑻𝑻
𝒇𝒇𝒊𝒊

 

 
Due to channel independence, predictive reliability no longer depends on the similarity between period 

length of different dimensions. The C set of 2D tensor is not reshaped based on the averaged top k frequencies 
from the aggregated time series, instead it is based on separate dimensional levels(keep the correspondence). 
 
Discover Intra-Dimensional Dependency and Association Between Multivariate: 
Aggregates The C Dimensions in 3D Space 
 
Consider a single timestamp, it is under the influence of inter-period series and intra-period timestamps, but 
also correlates with other variants/dimensions involved in the scenario. Hence, aiming to capture the dependa-
bility between multivariates, this paper proposes to aggregate the C dimensions, with their respective 1 aggre-
gated N features decomposed to form a set of 2D tensors(length is the number of timestamps and width is the 
number of features in one dimension C x [T, 1] → C x [T, N]), into 3D space and allow conv3d to analyze the 
hidden inner relation(height is the number of dimensions C x [T, 1, N] → [T, C, N]). The structure is represented 
in the figure below. 
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Figure 6. Multivariate modeling and feature representation. Time series decomposed and reshaped into 3 D 
space. Processing using 3D convolutional neural networks. Length(x-direction), width(z-direction), and 
height(y-direction) are as indicated 
 

Step one : separate independent dimensions from the intricate time series(1D) 
Step two : separate independent features in each dimension 
Step three : construct C(the number of independent dimensions) sets of 2D tensors with length of the 

number of timestamps(T) and width of the number of features(N) 
Step four : aggregate C 2D tensors make them overlap vertically to form a 3D block with height of the 

number of dimensions(C) 
 
Result Aggregation 
 
The learned 3D and 2D representations (variation of time series) will be transformed back into C comparable 
pairs of 1D representations that are dimension independent for aggregation. For the C times k 2D representa-
tions, independent dimension with its k variations, derived from its multi-periodicity, will be aggregated(given 
periodicity, found by evaluating the significance of its frequency, has its corresponding amplitude. Different 
variation times the weight/amplitude(A)) to produce one weighted representation of that independent dimen-
sion. Repeating aggregation for the other C-1 independent dimensions, we obtain C 1D representations that can 
be averaged with the outcome produced by the 3D representation. 
 

𝑋𝑋3𝐷𝐷
[𝑇𝑇,𝐶𝐶,𝑁𝑁]�  and 𝐶𝐶 × 𝑋𝑋2𝐷𝐷

[𝑓𝑓,𝑇𝑇/𝑓𝑓]�  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓 ∈ [1, 2, . . . , 𝑘𝑘]) 
 

𝐶𝐶 × 𝑋𝑋3𝐷𝐷 𝑡𝑡𝑡𝑡 1𝐷𝐷
[𝑇𝑇,1]�  and 𝐶𝐶 × 𝑋𝑋2𝐷𝐷 𝑡𝑡𝑡𝑡 1𝐷𝐷

[𝑇𝑇,1]�  
 

After each dimension pair is averaged to produce C learned dimensions, we aggregate these dimen-
sions to obtain the learned time series. For the last step : Weightage of different dimensions can be determined 
by comparing their respective periodicity and trend relative to the original time series (high similarity 𝛼𝛼 high 
correlation 𝛼𝛼 weights more). 
 
Smooth L1 Loss function 
 

 
 
The loss function used in AdapFAN is smooth L1. The formula is shown above where 𝑙𝑙𝑛𝑛denotes loss, 𝑋𝑋𝑛𝑛denotes 
the predicted value, 𝑌𝑌𝑛𝑛denotes the actual value, beta is a hyper-parameter(in my code the default value of beta 
is 1). Smooth L1 is determined in experiment. It can prevent gradient explosion. In addition, Smooth L1 Loss 
combines the advantage of L2 Loss of fitting faster and having a derivative at point 0 for easy convergence. It 
also combines the advantage of L1 Loss in the boundary region, making the network more robust against out-
liers and able to pull back when the offset is large. 
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Experiment 
 
Datasets Descriptions 
 
This paper adapted the real-world scenario that is relevant to streamflow rate forecasting. We conduct experi-
ments on the benchmark published by the United States Geographical Survey(USGS) to evaluate the perfor-
mance of the proposed AdapFAN. The State of Iowa, the study area, is situated in the country's Midwest. With 
71,655 miles of rivers and streams extending from border to border, it boasts a wealth and diversity of water 
resources (Iowa DNR, 2004). In 2008, catastrophic flooding in Eastern Iowa  resulted in property losses ex-
ceeding $6 billion. Therefore, streamflow forecasting and monitoring are essential for Iowa's improved water 
resource management and disaster recovery. Furthermore, Iowa's agricultural sector has a low paving rate and 
little human involvement, which makes it a good place to conduct rainfall-runoff research. Below table is a 
description of different categories the dataset is concerned with. Dimension denotes the variate number of each 
dataset. In the dimensions row, (v) denotes variable, while (c) denotes constant. Frequency refers to the sam-
pling interval of time point, that is the time interval in which the data is recorded and updated(15-60 minutes is 
a fairly small interval). 
 
Table 1. Detailed datasets descriptions. Dataset Size denotes the total number of time points in (Train, Valida-
tion, Test) split respectively. Prediction Length denotes the future time points to be predicted and three predic-
tion settings are included in each dataset 
 

 1 2 3 4 5 6 7 8 9 10 

Dimens
ions 

(v) 
Streamf
low rate 

(v) 
Precipit

ation 
 

(v) 
Evapotr
anspirat

ion 

(c) 
Travel 
time 

(c) 
Area 

(c) 
Slope 

(c) 
loam 

(c) 
Slit 

 

(c) 
Silty-
clay 
loam 

(c) 
Sandy-

clay 
loam 

Unit ft^3/s 
 

mm/ho
ur 

mm/mo
nth 

/ / / / / / / 

Freque
ncy 

15-60 
minutes 

Hourly Monthl
y 

constan
t 

constan
t 

constan
t 

constan
t 

constan
t 

constan
t 

constan
t 

Dataset size [train, valid, test] : [25982, 3644, 7383] 

Dataset id (ifc_ID) : 519 

 
Another point to note, WaterBench, CAMEL, and DeepDP are the three major hydrological dataset 

available for flood research. However, the WaterBench dataset is chosen among CAMEL and DeepDP Because 
the time series in the CAMEL dataset are gathered from various sources, there might be a wide range of tem-
poral variations, which makes predicting considerably more difficult. While deepDP is relatively new compared 
to WaterBench, it has less historical data and focuses more on flash floods instead of riverine floods, so Water-
Bench is considered the most suitable one and it, in addition, explicitly stated in its dataset overview that Wa-
terBench is published specifically for deep learning model training and hydrological forecasting tasks. 
 

Volume 13 Issue 4 (2024) 

ISSN: 2167-1907 www.JSR.org/hs 9



   
 

   
 

Deep Learning Model Selection 
 
This project extensively compare the well-acknowledged and advanced models in all five tasks, including the 
RNN-based models: LSTM (1997), and LSSL (2022); CNN-based Model: TCN (2019); MLP-based models: 
LightTS (2022) and DLinear (2023); Transformer-based models: Reformer (2020), Informer (2021), Pyra-
former (2021a), Autoformer (2021), FEDformer (2022), Non-stationary Transformer (2022a) and ETSformer 
(2022). 
 
Table 2. Full results for the long-term forecasting task. This project compares extensive competitive models 
under different prediction lengths. The input sequence length is set to 96 for the weather dataset. Avg is aver-
aged from all four prediction lengths. 
 

 
 

Mse or mae in red indicates it is the lowest value among all others over the same row. While values in 
blue are the second best results. Whether using mse or mae as the metric, it is clearly shown that Timesnet on 
average achieves the lowest loss value for all four prediction lengths.  
 
Model Training 
 
Table 3. Parameter tuning using dataset 519 (hyper-parameters : input 96, predict 96, encoder layer - 2, decoder 
layer - 1, Period - 2, Top k - 5, early stop is employed to prevent overfitting) 
 

Trial Methodology ep lr Loss 
function 

Epoch loss 
(test | train) 

mse mae 

1 Timesnet 10 -5 Smooth L1 
loss 

0.09083 | 
0.08715 

0.560186564
9223328 

0.17039169
371128082 

2 Timesnet 50 -5 Smooth L1 
loss 

0.09135 | 
0.08717 

0.560089372
01923 

0.17031983
02938217 

3 Timesnet 100 -5 Smooth L1 
loss 

0.09245 | 
0.08707 

0.519901237
487793 

0.17022508
38279724 

9 Timesnet 200 -5 Smooth L1 
loss 

0.09452 | 
0.9006 

0.523419381
294792 

0.17269392
311573029 

3 Timesnet 
 

100 -4 Smooth L1 
loss 

0.08109 | 
0.07577 

0.529326438
9038086 

0.15653079
748153687 

4 Timesnet 
 

100 -2 Smooth L1 
loss 

0.07744 | 
0.06121 

0.483868718
14727783 

0.14621685
445308685 

6 Timesnet 
 

100 -1 Smooth L1 
loss 

0.085 | 
0.07006 

0.522712111
4730835 

0.14834637
939929962 
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5 Timesnet 100 -2 L1 loss 0.5912 | 
0.21938 

0.632982739
1048472 

0.17829473
8297421 

5 Timesnet 100 -2 Mse 0.5505 | 
0.27625 

0.506245970
7260132 

0.16920229
79259491 

7 Timesnet and 3D 100 -2 Smooth L1 0.08356 | 
0.05541 

0.474599003
7918091 

0.14203623
99101261 

8 Timesnet(channel 
independence) and 3D 

100 -2 Smooth L1 0.08653 | 
0.05601 

0.482191801
071167 

0.14034427
12545395 

 
The performance determined using mse and mae values(the lower the mse or mae, meaning lower loss, denotes 
a higher predicting accuracy) the epoch is determined to be 100 the optimum, learning rate to the power of -5 
the optimum, smooth L1 loss the optimum. Text in red corresponds to the best result among the entire column. 
 
Comparative Experiments 
 
Table 4. Comparison between convolutional neural networks in TimesNet. Input length is 96, prediction length 
is 96(equivalent to 4 days lead time)  
 

 Inception Block Vgg ResNet ResNeXt ConvNext SwinBlock 

MSE 0.169263934 0.17619237 0.18259283 0.19189992 0.19983721 0.18102931 

MAE 0.219832912 0.22913782 0.22991807 0.24010027 0.23819213 0.22130982 

 
By comparing different cnn for the analysis of 2D tensors in TimesNet, I went over six cnn options and deter-
mined to use inception block as it achieves the lowest mse and mae relative to the other five. 

After building the model, I firstly compared AdapFAN to the two foundation models: S2S network 
and vanilla LSTM. the blue line is LSTM, the S2S is in red. Below these two lines, AdapFAN has been run for 
three times with small changes in its parameters, but the average value is clearly shown. AdapFAN has much 
lower value in mae or mse relative to LSTM and S2S as indicated in the y-axis.  
 

 
 
Figure 7. Training data downloaded from Wandb for comparative purpose 
 

Specifically, AdapFAN outperforms LSTM, S2S by 13.4% and 26.6% and achieves the lowest mse at 
0.474599 and lowest mae at 0.1403, showing strong potential for operational usage. More experiments have 
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been conducted on AdapFAN, Dlinear, Autoformer, and FEDformer for comparative references(shown in fig-
ure 7). 
 

 
 
Figure 8. Visual comparison between Dlinear, Autoformer, FEDformer and AdapFAN (input-96, predict-96) 
 

AdapFAN achieves the closest simulation relative to the ground truth curve in the experiments when 
compared to the recently published and well-acknowledged transformer-based or linear models. The prediction 
length is 96 which is equivalent to 4 days lead time. Three more visual comparisons between AdapFAN, linear, 
and vanilla transformer are shown in figure 9 and 10. 
 

 
 
Figure 9. Visualization of prediction made by AdapFAN on WaterBench dataset (input-96, predict-96) 
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Figure 10. Visualization of predictions made by vanilla transformer and Dlinear model on the same dataset 
(input-96, predict-96) 
 

Results 
 
Compared to both data-driven methods using linear, MLP methods, and LSTM models, and process-based 
methods using vanilla transformer and its recent variants designed specifically for time series forecasting, Adap-
FAN performed admirably (Figure7-10). Mse and mae are comparatively lower on average. In terms of long-
term forecasting, AdapFAN achieves four days lead time while with improved accuracy compared to afore-
mentioned models (Table 8-10). 
 

Conclusion and Evaluation 
 
As shown in the experiment section, AdapFAN outperforms LSTM, S2S by 13.4% and 26.6% and achieves the 
lowest mse at 0.474599 and lowest mae at 0.1403, showing strong potential for operational usage. In addition, 
AdapFAN achieves the closest simulation relative to the ground truth curve in the experiments when compared 
to the recently published and well-acknowledged transformer-based or linear models with the prediction length 
of 96 which is equivalent to 4 days lead time. This lead time is 4 days longer than the lead time achieved in 
nowcast from a current state-of-the-art global modeling system.  

For future direction of improvement, I would consider, if possible, putting the proposed AdapFAN 
into practice in South China or India. The model can send out warning signals whenever the predicted value of 
rate of run-off volume exceeds 1000 m^3/s. The ultimate value of the real-world-scenario-based model is de-
termined by its practical use. I believe AI technology, in addition to technical evolution, should be utilized in 
practice for global good.  
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