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ABSTRACT

Over the last decades, floods have become the most common and deadly natural disaster on the planet. While
many countries currently lack effective early warning systems and alerts(India, Malaysia, South Asia etc.).
Flood forecasting is a very exploratory project because there is substantial peer-reviewed evidence that flood
early warning can prevent between 30% to 50% of both fatalities and economic harms(Perera et al.). Existing
challenges in flood forecasting include how to establish relations between more variables, extend the lead-time
for actual warning with improved accuracy, and how model-dependent(process-based) and model-independ-
ent(data-driven) strategies can be balanced to magnify the long term predictive potential of deep learning mod-
els. Given the competitive performance deep learning models have shown in temporal variation modeling, tem-
poral dependency learning, and multivariate representation, this paper aims to explore the potential of deep
learning model in forecasting floods and focuses on the adaptation and training of the deep learning network,
namely AdapFAN, for flood forecasting. Building on the data-driven basis, AdapFAN incorporates process
algorithms(taking multi periodicity, interdimensional, and intradimensional dependencies into account) in sep-
arate paths to further its predictive length and reliability. Specifically, AdapFAN adopts TimesNet to transform
complex 1D time series into multiple 2D tensors representing interperiod and intraperiod temporal variations,
tackling the representation limitation of 1D series. Building on that, AdapFAN adopts channel independence to
avoid the loss due to the average of multi periodicity between different dimensions. To take the influence of
dimensional dependencies into account, dimensions are aggregated into 3D space and allow conv3d to analyze
the hidden inner relations between multivariates. Using AdapFAN, this project achieves reliability in predicting
extreme riverine events in ungauged watersheds at up to a 4-day lead time(96 timestamp) that is similar to or
better than the reliability of nowcasts (0-day lead time) from a current state-of-the-art global modeling system.

Introduction

Flood is a climate-related natural disaster. It is defined as an overflow of water over dry lands, usually followed
by fatalities and economic damage. According to the international disaster database, flooding occurs more fre-
quently than all other types of natural hazards across the globe, and accounts for 39% of all disasters arising
from natural hazards since 2000, with >94 million people affected worldwide every year(Guha-Sapir et al.,
2018). However, substantial peer-reviewed evidence stated that flood early warning can prevent between 30%
to 50% of both fatalities and economic harms(Perera et al.). According to WMO, “Recorded economic losses
linked to extreme hydro-meteorological events have increased nearly 50 times over the past five decades, but
the global loss of life has decreased by a factor of about 10, thus millions of lives are being saved”("Early
Warning"). When the rate of runoff-volume exceeds 1000 m3 /s, the likelihood of flood is likely to take place.
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Aim of this project is to forecast floods in 4-days lead time(96 timestamp) with improved accuracy
measured by mse and mae. However, it’s hard to find much reference on streamflow forecasting using hydro-
logical analyzing models(available models in this aspect are limited). Traditional hydrological models including
conceptual models, physically based models, and statistical models degrade significantly in performance when
calibrated for multiple basins together instead of for a single basin alone. This inability to transfer or extrapolate
the hydrologic information from one to another(e.g. From gauged to ungauged watershed) indicates the problem
that model-dependent methods with a convoluted process network following pre-assumed patterns can limit a
model’s scalability.

Recent studies cast doubt on the effectiveness of transformers in addressing forecasting tasks by com-
paring its performance with linear models or vanilla LSTM. Transformers’ problem with low scalability, mean-
ing it can perform well in one scenario but usually perform very poorly or far less competent in another scenar-
ios, are probably due to the same reason — overly process-dependent (being overly process-dependent results in
the failure to learn and encode regional differences in catchment characteristics and translate it into appropri-
ately heterogeneous hydrologic behavior uses). Hence, my selected base model in this project, namely
Timesnet, is a task general deep learning method not following transformer architecture and is showing strong
adaptabilities and competence in all tasks including long term, short term forecasting, anomaly detection, im-
putation, and classification.

Long-term Forecasting
(MSE)

0.50
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(SMAPE)
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(F1-Score) (MSE) Reformer (2020)

Chart 1. Model performance comparison: As a foundation model, TimesNet achieves consistent state-of-the-
art performance on five mainstream analysis tasks compared with other customized models(Wu et al.)

On the other hand, we do need certain process representations when dealing with long term forecasting.
Unlike short term forecasting, longer prediction needs stronger structural information that is extendable and is
considered inherent in the data feature. In this respect, time series specificities should be taken into account.
This includes multivariate and temporal variations.

Multivariate time series refers to data that involves multiple variables (e.g. streamflow rate, precipita-
tion, slope, loam, ET, etc.) and is influenced by the relationship between variables. AdapFAN, by reshaping
original 1D time series into 3D space, with length(x) representing the number of timestamps, width(z) repre-
senting the number of features in one dimension, and height(y) displaying the number of dimensions enhances
the visual representation of multiple dimensions(multivariates, its respective features, and timestamp are holis-
tically rearranged for analyzing). Building on that, by making use of 3D convolutional neural network’s com-
petence in addressing high dimensional visual tasks, intradimensional(between multivariate) dependencies can
be coherently processed.

ISSN: 2167-1907 www.JSR.org/hs 2



HIGH SCHOOL EDITION

@ Journal of Student Rescarch

For temporal variations, it refers to the common features a time series data possesses. It includes peri-
odicity(this further introduces inter-period, intra-period relationship, and ), trend, and autocorrelation. To pre-
vent the setting of too many predefined patterns that may result in scalability reduction of my model, I incor-
porate only the most long-term-forecasting-related time series specificity, multi periodicity(more implicit rela-
tive to trend, more variable, and exist in the long term relative to autocorrelation), as the process representation.
I designed AdapFAN which uses TimesNet as backbone and has improved its accuracy by proposing channel
independence for distinct variates. In this way, multi periodicity of the original 1D time series is decomposed
into its top k prominent period lengths(which can be different for distinct variates). Reshaped and padded based
on different period lengths, a set of 2D tensors are produced to show not only temporal variations of different
period length, but also the simultaneous representation of interperiod and intraperiod series.

Technically, based on above motivations, my contributions are summaries in three folds:

e Due to the importance of scalability for hydrologic forecasting models, I selected the task general time
series method, namely TimesNet, as the backbone of AdapFAN.

e  Visual representation of multivariate in higher dimensions: variates, features, and timestamp are ho-
listically processed using 3D convolutional neural networks to achieve holistic interdimensional rep-
resentation of variants, features, and timestamp.

e Modeling temporal variations in three aspects as process representations: Multi periodicity, interper-
iod, and intraperiod variations derived from multiperiodicity are decomposed to provide structural
reference for long term forecasting.

literature review: Dataset selection(1/2): Baseline model selection:
Delermme.prucess representations WaterBench published by United States Geographical Conparative experiments between TimesNet and 12 other
that are reliable for long term Survey(USGS) is a hydrological benchmark collected specifically well-acknowledged and advanced models(including LSTM and its
forecasting and compare existing for deep learning model training on flood and streamflow variants, and transformer variants) shows that TimesNet achieves
hydrological DL models and their forecasting. It has a consistant source, higher temporal revolution, state-of-the-art in more than 80% of cases in long-term
applicability and higher study usage relative to CAMEL and FlowDB. forecasting.
‘ : v
Conclusion: - Methodology(2/2): Methodology(1/2):
R : ixperiment: = " ‘ . i
AdapFAN outperforms LSTM, metri | " To avoid the loss of interdependence between TimesNet's accuracy relies heavily on the
: metrics used: mae and mse i . . A caaae N K
TimesNet by 13.4% and 6.6% and X dimensions, AdapFAN use inverted periodicity similarity between multiple
R 4 (1) parameter tuning: 100ep, -2Ir, X R AR o 3 N 24 §
achieves the lowest mse at - s th L1l - transformer architecture or 3D convolutional | dimensions. AdapFAN propose
Smooth L1loss _ 5
0.474599 and lowest mae at a - e neural network to capture multivariate independent channel for the capture of
i o . (2) comparasion between Timesnet, i . thea T2 ki - o B
0.146267, showing strong potential LSTM. and AdapFAN correlations and learn nonlinear intradimensional temporal dependency to
o ,d a \ . . . .
for development. I representations for interdimentional analysis. avoid this loss due to early average.

Chart 2. Framework of the project showing all subsections of the procedure

The framework of my overall progression is shown in chart 2. By training AdapFAN on WaterBench
data set using meteorological time series data and static catchment attributes, AdapFAN achieves the lowest
mse at 0.474599 and lowest mae at 0.146267. This project was able to significantly improve performance com-
pared to a set of several different hydrological benchmark models and can send out signals whenever the rate
of run-off volume exceeds 1000 m"3/s.

Related Work

Model-Dependent and Model-Independent Methods for Flood Forecasting

Model-dependent methods use process-based models. These models usually follow predefined patterns and
physical assumptions that give specific algorithms to data processing. To give some examples, Samaniego pro-
posed the multiscale parameter regionalization (MPR) method(L et al.), which establishes the model and a
regionalization scheme by regressing the parameters of a set of transfer functions that are predefined and map
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the parameters of hydrological models to ancillary data, such as soil properties. A conceptual model trained on
eleven catchments was calibrated by Seibert and regressed on the available features of the catchments(J). When
compared to seven other catchments, the regionalization capacity's stated performance varied from a Nash-
Sutcliffe Efficiency (NSE) of 1.42 to 1.76 (relatively high, indicating a low reliability)(J). In that sense, most
cases using model-dependent methods rely on prior knowledge of the hydrological system and hence can hardly
be adapted to the appearance of regional differences. Or to put it in a more common sense way, specificity can
be an indication of low elasticity and may lead to rigidity in long term forecasting regardless of variable influ-
encers.

Model-independent methods use data-driven models(this is usually referred to as black box). Most of
the published papers that are based on data-driven approaches use vallila long-short-term-memory(LSTM) and
its variants. Very few papers explore other RNN-based deep learning models including gated recurrent
unit(GRU) and sequence to sequence(S2S) network as flood forecasters, which indicates there has not had much
development other than these few vanilla foundations(LSTM and RNN models). In addition, despite its ad-
vantage in short term prediction, the existing problem for these process based methods is its low accuracy in
long term forecasting. Even Nowcast, the current state-of-art model for flood forecasting using LSTM, has 0
lead time(only archives a few hours ahead, not even a day).

Temporal Variation Modeling

As one of the time series specificities, temporal variation modeling has been well explored. Conventional mod-
els assume that temporal variance adheres to predetermined patterns. like Holt-Winster, ARIMA, and Prophet.
However, the actual usefulness of these classical approaches is limited since the variations of real-world time
series are typically too complicated to be covered by these established patterns. However, deep learning meth-
ods like RNN-based models, TCN (temporal convolutional network), and MLP (Multilayer Perceptron) are
available for temporal modeling. Notably, this work takes into account the temporal 2D-variations based on
decomposed periodicity, which are not taken into account by any of the above approaches.

Furthermore, transformers are being passionately explored in this aspect. Primary approach for trans-
former-based forecasting models to achieve better temporal variation modeling is by enhancing self-attention
to a sparse version. (1) locality-sensitive hashing attention (used in reformer); (2) multihead attention; (3)
memory-efficient attention; (4) hashing attention; (5) multo-round LSH attention (used in reformer); and (7)
prob sparse attention (used in informer). These models still use the point-wise representation aggregation, but
performance is much enhanced. Because of the sparse point-wise connections, they will therefore forfeit infor-
mation utilization in the process of improving efficiency, creating a bottleneck for long-term time series fore-
casting. My project instead of continuing the use of sparse representation of time series, series level modeling
is proposed. AdapFAN is carefully designed regarding the holistic representation of 1D time series reshaped
into higher visual dimensions (2D for temporal variation and 3D for multivariate) and processing using effective
tools.

Multivariates Modeling

Not much has been done or no significant achievement in this aspect yet due to the inherent complexity of
capturing multivariate dependencies. Multivariate modeling has to take extensive assumptions and correlated
variables into account, and by introducing one more variable, this may result in double the number of extra
related factors, hence its difficulty increases exponentially. However, I would consider a novel method of data
representation a beneficial approach to multivariate modeling. Since the convolutional neural network’s com-
petence in image processing shows the potential for holistic analysis of data, and if we embed 1D time series
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to another spatial arrangement of higher dimensions that can present multivarients separately and simultane-
ously, better performance may be expected.

In addition, channel design is concerned with the processing of variants. A multivariate time series is
a multi-channel signal. Channel-mixing refers to the case where the input token takes the vector of all time
series features and projects it to the embedding space to mix information. On the other hand, channel-independ-
ence means that each input token only contains information from a single channel. This was proven to work
well with CNN (Zheng et al., 2014) and linear models (Zeng et al., 2022).

Methodology

The overall architecture of AdapFAN is shown in figure 3, which is an end-to-end method. AdapFAN contains
two modules, one is Timesnet-based method supported with channel independence, fast fourier transform, and
inception block determined through comparative experiment. The other one is 3D modeling for multivariate
making use of 3D cnn.

k 2d temporal variations as input. TimesBlock Aggregation: 2D
as basic architecture for ing and
inception block for 2d analysis

aggregates by times the

weight with reference to
the amplitude

1D time series with significance in the

length(number of timestamp) T frequency domain. 3D

channel independence: transform into C 1D univariate Fast Fourier Transform: convert the series from time
| series with length T(number of 1D series in this stage is |————|  domain to frequency domain and find the top k

equivalent to the number of dimensions) period length of the C univariates

and C dimensions(multivariate)

dimensional embedding 2: construct dimensional embedding 3:
C sets of 2D tensors with length of aggregate C 2D tensors make
the number of timestamps(T) and them overlap vertically to form
width of the number of features(N) 3D block with height of C

3D convolutional neural network for
spatial processing and multivariant
relationship learning

dimensional embedding 1: separate
and features  ——»-
from the intricate time series(1D)

Figure 3. Module overview of AdapFAN(C denotes dimension, T denotes timestamp, P denotes period, and k
are parameters set to be 5)

Inter-Dimensional Dependencies Representation Using TimesNet: Transform 1D Series into
A Set of 2D Tensors

For a time series, what we see is just a graph of what it looks like when multiple sub-parts, including periods
of different lengths, overlap and influence each other in an implicit sense. This results in a time series that is
inherently complex and difficult to extract features from. Timestamp possessing the same period length, time
points are affected by both intraperiod and interperiod variations. Secondly, for each sub-components in the
time series, the time points contained within them are affected not only by the neighboring time points pos-
sessing the same period length, but also by the variations of the neighboring periods, i.e. intraperiod and in-
terperiod variations, intraperiod variations can indicate short-term time patterns, and the interperiod variation
can reflect the long term aspect. If multiperiodicity is not clearly decomposed, the time series as a whole can
be assumed to have infinite period length. In that sense, prediction can only be based on the interaction between
each neighboring timepoint, which is short term forecasting. While the long-term reliability would be extremely
difficult to find.

Based on the above time series specificities, two features that an effective forecaster have to possess
are the ability to decompose entangled multi periodicity into multiple individual period lengths and operate
interperiod and intraperiod processing. 2D tensors with different period lengths will display different inter and
intra period variations and hence difference hydrological behavior. Therefore, the model needs to further trun-
cate the complex time series according to the top k period length, then interpret the inter and intra period future
behavior.
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Since it is difficult to capture intra- and inter-period variations simultaneously in one dimension (a
long infinitely extended time-series with the time dimension being the x-axis), the time series are truncated into
T/P short cuts with single periodicity based on learned C top k period lengths. They are then stitched together
chronologically up and down to form a 2D representation (with T/P as the length, and P (all the time points
contained in one period) as the width). The final result is k 2d temporal variations generated based on different
period lengths. As a result, the ability to represent time series previously limited to 1d time series is tackled,
and the learning of interperiod and intraperiod variations can be performed simultaneously.

Analyse the time series in the Average and reduce C dimensions to 1D time series transformed to k
frequency domain by Fast ——3| a single frequency domain and take » 2D variations based on top k
Fourier Transform (FFT) the top k period periodicity(k is set to be 5)

Weightage and TimesBlock processing (this
aggregation back to 1D |« includes inception block for visual [«
time series analysis of the 2D tensors)

Figure 4. Mechanism of Timesnet architecture

Based on an understanding of the multi-periodic nature of time series and the two forms of intra- and
inter-period temporal interaction of a given period length, simultaneous analysis of three forms of temporal
variation including point level, series level, and cross series level is achieved by reconstructing the original 1d
time series into a set of 2d image according to learned period length, which is a breakthrough in terms of
visualization and task universality.

Channel Independence

We consider the following problem: given a collection of multivariate time series samples with lookback win-
dow L : (x4, ..., x;) where each x, at time step t is a vector of dimension M, we would like to forecast T future
values (X 41, ..., X 47 ). Our model is illustrated in the figure below where the model makes use of the timesnet
architecture. For the forward process, we denote a i th univariate series of length L starting at time index 1 as
x = (xi,...,x}) where i = 1, ..., M. The input (xy,...,x; ) is split to M univariate series x (i) € R 1xL,
where each of them is fed independently into the TimesNet backbone according to our channel-independence
setting. Then the timesnet backbone will provide prediction results x” (i) = ("x (i) L+1, ..., x” (i) L+T ) € R IxT
accordingly.

Channel- = — : -
independence l:}—’ 'é [ ] Concatenate AT, 7
) AR
@ ;
5 =
EAAAANNAN—
xeRTE EAAAA A A— £ € R
xDeR™,i=1,..,M 2O eRT,i=1,..,M
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Figure 5. Channel independence between dimensions to avoid the lose or interference of periodicity,
Timesblock is the functioning unit of TimesNet

Multivariate time series data is divided into separate channels. They share the same TimesBlock back-
bone, but the forward processes are independent. For the decomposition of multi periodicity, this project fast
fourier transform(FFT). Through which, the time domain of the time series is transformed into the frequency
domain. The formula is shown below where X[k] is the expression of a discrete series in the frequency domain,
x(t) is the original discrete series in the time domain, k denotes the frequency index, N is the series length.

N-1

X[k = Z z[nle J2xkn/N

n—0

Based on the amplitude values of each frequency component in the frequency domain, the largest k
amplitude values are taken. These amplitudes each correspond to one frequency index and are indicated by the
magnitude to occupy the k highest significance(prominence) over the other existing periods of the time series.
Only k(in my code k is set to be 5) most significant frequencies are taken to avoid noise and overanalyzing (to
the extent that some are meaningless) of periodicities beyond the original time series. From the values of these
k most significant frequencies, their corresponding period length can be found using the formula below, where
p denotes period length, T denotes timestamp, and f denotes frequency.

T
bi = &
Y
Due to channel independence, predictive reliability no longer depends on the similarity between period
length of different dimensions. The C set of 2D tensor is not reshaped based on the averaged top k frequencies
from the aggregated time series, instead it is based on separate dimensional levels(keep the correspondence).

Discover Intra-Dimensional Dependency and Association Between Multivariate:
Aggregates The C Dimensions in 3D Space

Consider a single timestamp, it is under the influence of inter-period series and intra-period timestamps, but
also correlates with other variants/dimensions involved in the scenario. Hence, aiming to capture the dependa-
bility between multivariates, this paper proposes to aggregate the C dimensions, with their respective 1 aggre-
gated N features decomposed to form a set of 2D tensors(length is the number of timestamps and width is the
number of features in one dimension C x [T, 1] — C x [T, N]), into 3D space and allow conv3d to analyze the
hidden inner relation(height is the number of dimensions C x [T, 1, N] — [T, C, N]). The structure is represented
in the figure below.

g &
s Token ! 58
v &
: «
_______________________________ Token "
- k
' =
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, =
————————————————————————————————————— 2
Token =
=]
=
”””””””””””””””””””” Time feature 3D Conv Multivariate feature

representation
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Figure 6. Multivariate modeling and feature representation. Time series decomposed and reshaped into 3 D
space. Processing using 3D convolutional neural networks. Length(x-direction), width(z-direction), and
height(y-direction) are as indicated

Step one : separate independent dimensions from the intricate time series(1D)

Step two : separate independent features in each dimension

Step three : construct C(the number of independent dimensions) sets of 2D tensors with length of the
number of timestamps(T) and width of the number of features(IN)

Step four : aggregate C 2D tensors make them overlap vertically to form a 3D block with height of the
number of dimensions(C)

Result Aggregation

The learned 3D and 2D representations (variation of time series) will be transformed back into C comparable
pairs of 1D representations that are dimension independent for aggregation. For the C times k 2D representa-
tions, independent dimension with its k variations, derived from its multi-periodicity, will be aggregated(given
periodicity, found by evaluating the significance of its frequency, has its corresponding amplitude. Different
variation times the weight/amplitude(A)) to produce one weighted representation of that independent dimen-
sion. Repeating aggregation for the other C-1 independent dimensions, we obtain C 1D representations that can
be averaged with the outcome produced by the 3D representation.

T,C,N ,T
XM and € x XL where £ € [1,2,..., k])

(T.1] [7,1]
C X X3p01p a0d C X X350 1p
After each dimension pair is averaged to produce C learned dimensions, we aggregate these dimen-
sions to obtain the learned time series. For the last step : Weightage of different dimensions can be determined
by comparing their respective periodicity and trend relative to the original time series (high similarity a high
correlation a weights more).

Smooth L1 Loss function

0.5(z, — y,)?/beta, if |z, — yn| < beta

[ —

" |z, — yn| — 0.5 % beta, otherwise
The loss function used in AdapFAN is smooth L1. The formula is shown above where ,,denotes loss, X,,denotes
the predicted value, ¥, denotes the actual value, beta is a hyper-parameter(in my code the default value of beta
is 1). Smooth L1 is determined in experiment. It can prevent gradient explosion. In addition, Smooth L1 Loss
combines the advantage of L2 Loss of fitting faster and having a derivative at point O for easy convergence. It
also combines the advantage of L1 Loss in the boundary region, making the network more robust against out-
liers and able to pull back when the offset is large.
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Experiment
Datasets Descriptions

This paper adapted the real-world scenario that is relevant to streamflow rate forecasting. We conduct experi-
ments on the benchmark published by the United States Geographical Survey(USGS) to evaluate the perfor-
mance of the proposed AdapFAN. The State of lowa, the study area, is situated in the country's Midwest. With
71,655 miles of rivers and streams extending from border to border, it boasts a wealth and diversity of water
resources (Iowa DNR, 2004). In 2008, catastrophic flooding in Eastern Iowa resulted in property losses ex-
ceeding $6 billion. Therefore, streamflow forecasting and monitoring are essential for Iowa's improved water
resource management and disaster recovery. Furthermore, lowa's agricultural sector has a low paving rate and
little human involvement, which makes it a good place to conduct rainfall-runoff research. Below table is a
description of different categories the dataset is concerned with. Dimension denotes the variate number of each
dataset. In the dimensions row, (v) denotes variable, while (c) denotes constant. Frequency refers to the sam-
pling interval of time point, that is the time interval in which the data is recorded and updated(15-60 minutes is
a fairly small interval).

Table 1. Detailed datasets descriptions. Dataset Size denotes the total number of time points in (Train, Valida-
tion, Test) split respectively. Prediction Length denotes the future time points to be predicted and three predic-
tion settings are included in each dataset

Dimens | (V) v) ) () (©) (© () () () (©

ions Streamf | Precipit | Evapotr | Travel Area Slope loam Slit Silty- | Sandy-
low rate | ation | anspirat [ time clay clay
ion loam loam
Unit ftA3/s | mm/ho | mm/mo / / / / / / /
ur nth

Freque 15-60 | Hourly | Monthl | constan | constan | constan | constan | constan | constan | constan
ncy minutes y t t t t t t t

Dataset size [train, valid, test] : [25982, 3644, 7383]

Dataset id (ifc_ID) : 519

Another point to note, WaterBench, CAMEL, and DeepDP are the three major hydrological dataset
available for flood research. However, the WaterBench dataset is chosen among CAMEL and DeepDP Because
the time series in the CAMEL dataset are gathered from various sources, there might be a wide range of tem-
poral variations, which makes predicting considerably more difficult. While deepDP is relatively new compared
to WaterBench, it has less historical data and focuses more on flash floods instead of riverine floods, so Water-
Bench is considered the most suitable one and it, in addition, explicitly stated in its dataset overview that Wa-
terBench is published specifically for deep learning model training and hydrological forecasting tasks.
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Deep Learning Model Selection

This project extensively compare the well-acknowledged and advanced models in all five tasks, including the
RNN-based models: LSTM (1997), and LSSL (2022); CNN-based Model: TCN (2019); MLP-based models:
LightTS (2022) and DLinear (2023); Transformer-based models: Reformer (2020), Informer (2021), Pyra-
former (2021a), Autoformer (2021), FEDformer (2022), Non-stationary Transformer (2022a) and ETSformer
(2022).

Table 2. Full results for the long-term forecasting task. This project compares extensive competitive models
under different prediction lengths. The input sequence length is set to 96 for the weather dataset. Avg is aver-
aged from all four prediction lengths.

LST™M
(1997)

TimesNet ETSformer LightTS*
(Ours) (2022) (2022)

DLinear* FEDformer Stationary Autoformer Pyraformer Informer LogTrans Reformer LSSL

Models @023)  (022) (2022a)  (2021)  (2021a)  (021)  (2019)  (2020)  (2022)

Metric MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

96 (0.172 0.220(0.197 0.281|0.182 0.242|0.196 0.255|0.217 0.296/0.173 0.223]0.266 0.3360.622 0.556|0.300 0.384|0.458 0.490(0.689 0.5960.174 0.252]|0.369 0.406
192 {0.219 0.261(0.237 0.312/|0.227 0.287|0.237 0.296|0.276 0.336(0.245 0.285|0.307 0.367(0.739 0.624/|0.598 0.544|0.658 0.589(0.752 0.638(0.238 0.313|0.416 0.435
336 (0.280 0.306(0.298 0.353|0.282 0.334(0.283 0.335/0.339 0.380(0.321 0.338]0.359 0.395(1.004 0.753]0.578 0.523|0.797 0.652(0.639 0.596|0.287 0.355|0.455 0.454
720 |0.365 0.359(0.352 0.288|0.352 0.386/0.345 0.381(0.403 0.428|0.414 0.410|0.419 0.428|1.420 0.934(1.059 0.741|0.869 0.675|1.130 0.792(0.384 0.415|0.535 0.520

Weather

| Avg 0.259 0.2870.271 0.334/0.261 0.312/0.265 0.317/0.309 0.360]0.288 0.314|0.338 0.382/0.946 0.717/0.634 0.548|0.696 0.602|0.803 0.656(0.271 0.334/0.444 0.454

Mse or mae in red indicates it is the lowest value among all others over the same row. While values in
blue are the second best results. Whether using mse or mae as the metric, it is clearly shown that Timesnet on
average achieves the lowest loss value for all four prediction lengths.

Model Training

Table 3. Parameter tuning using dataset 519 (hyper-parameters : input 96, predict 96, encoder layer - 2, decoder
layer - 1, Period - 2, Top k - 5, early stop is employed to prevent overfitting)

Trial Methodology ep Ir Loss Epoch loss mse mae
function (test | train)
1 Timesnet 10 -5 Smooth L1 0.09083 | 0.560186564 | 0.17039169
loss 0.08715 9223328 371128082
2 Timesnet 50 -5 Smooth L1 0.09135 | 0.560089372 | 0.17031983
loss 0.08717 01923 02938217
3 Timesnet 100 -5 Smooth L1 0.09245 | 0.519901237 | 0.17022508
loss 0.08707 487793 38279724
9 Timesnet 200 -5 Smooth L1 0.09452 | 0.523419381 | 0.17269392
loss 0.9006 294792 311573029
3 Timesnet 100 -4 Smooth L1 0.08109 | 0.529326438 | 0.15653079
loss 0.07577 9038086 748153687
4 Timesnet 100 -2 Smooth L1 0.07744 | 0.483868718 | 0.14621685
loss 0.06121 14727783 445308685
6 Timesnet 100 -1 Smooth L1 0.085 | 0.522712111 | 0.14834637
loss 0.07006 4730835 939929962
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5 Timesnet 100 -2 L1 loss 0.5912 | 0.632982739 | 0.17829473
0.21938 1048472 8297421
5 Timesnet 100 -2 Mse 0.5505 | 0.506245970 | 0.16920229
0.27625 7260132 79259491
7 Timesnet and 3D 100 -2 Smooth L1 0.08356| | 0.474599003 | 0.14203623
0.05541 7918091 99101261
8 Timesnet(channel 100 -2 Smooth L1 0.08653 | | 0.482191801 | 0.14034427
independence) and 3D 0.05601 071167 12545395

The performance determined using mse and mae values(the lower the mse or mae, meaning lower loss, denotes
a higher predicting accuracy) the epoch is determined to be 100 the optimum, learning rate to the power of -5
the optimum, smooth L1 loss the optimum. Text in red corresponds to the best result among the entire column.

Comparative Experiments

Table 4. Comparison between convolutional neural networks in TimesNet. Input length is 96, prediction length
is 96(equivalent to 4 days lead time)

Inception Block Vgg ResNet ResNeXt ConvNext SwinBlock
MSE 0.169263934 0.17619237 0.18259283 0.19189992 [ 0.19983721 0.18102931
MAE 0.219832912 0.22913782 0.22991807 0.24010027 0.23819213 0.22130982

By comparing different cnn for the analysis of 2D tensors in TimesNet, I went over six cnn options and deter-
mined to use inception block as it achieves the lowest mse and mae relative to the other five.

After building the model, I firstly compared AdapFAN to the two foundation models: S2S network
and vanilla LSTM. the blue line is LSTM, the S2S is in red. Below these two lines, AdapFAN has been run for
three times with small changes in its parameters, but the average value is clearly shown. AdapFAN has much
lower value in mae or mse relative to LSTM and S28 as indicated in the y-axis.

N ———
Train epoch loss Test epoch loss Valid epoch loss

Figure 7. Training data downloaded from Wandb for comparative purpose

Specifically, AdapFAN outperforms LSTM, S2S by 13.4% and 26.6% and achieves the lowest mse at
0.474599 and lowest mae at 0.1403, showing strong potential for operational usage. More experiments have
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been conducted on AdapFAN, Dlinear, Autoformer, and FEDformer for comparative references(shown in fig-
ure 7).

—— GroundTruth —— DLinear ——— Autoformer
= AdapFAN FEDformer

—0.5 1

0 50 100 150 200
Figure 8. Visual comparison between Dlinear, Autoformer, FEDformer and AdapFAN (input-96, predict-96)

AdapFAN achieves the closest simulation relative to the ground truth curve in the experiments when
compared to the recently published and well-acknowledged transformer-based or linear models. The prediction
length is 96 which is equivalent to 4 days lead time. Three more visual comparisons between AdapFAN, linear,
and vanilla transformer are shown in figure 9 and 10.

0.08 4 —— Prediction

~— GroundTruth
0.07 1
0.06
0.05 1
0.04 4

0.03 1

0.02

0.01

Figure 9. Visualization of prediction made by AdapFAN on WaterBench dataset (input-96, predict-96)
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Figure 10. Visualization of predictions made by vanilla transformer and Dlinear model on the same dataset
(input-96, predict-96)

Results

Compared to both data-driven methods using linear, MLP methods, and LSTM models, and process-based
methods using vanilla transformer and its recent variants designed specifically for time series forecasting, Adap-
FAN performed admirably (Figure7-10). Mse and mae are comparatively lower on average. In terms of long-
term forecasting, AdapFAN achieves four days lead time while with improved accuracy compared to afore-
mentioned models (Table 8-10).

Conclusion and Evaluation

As shown in the experiment section, AdapFAN outperforms LSTM, S2S by 13.4% and 26.6% and achieves the
lowest mse at 0.474599 and lowest mae at 0.1403, showing strong potential for operational usage. In addition,
AdapFAN achieves the closest simulation relative to the ground truth curve in the experiments when compared
to the recently published and well-acknowledged transformer-based or linear models with the prediction length
of 96 which is equivalent to 4 days lead time. This lead time is 4 days longer than the lead time achieved in
nowcast from a current state-of-the-art global modeling system.

For future direction of improvement, I would consider, if possible, putting the proposed AdapFAN
into practice in South China or India. The model can send out warning signals whenever the predicted value of
rate of run-off volume exceeds 1000 m”3/s. The ultimate value of the real-world-scenario-based model is de-
termined by its practical use. I believe Al technology, in addition to technical evolution, should be utilized in
practice for global good.
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