

Nanotechnology in Cybersecurity Detection Systems

Sagarika Senthilkumar¹, Kristina Lilova[#], Jothsna Kethar[#] and Virgel Torremocha[#]

¹Downingtown East High School, USA

[#]Advisor

ABSTRACT

This paper goes over the uses of how nanotechnology can be used to contribute towards the development of cybersecurity Intrusion Detection Systems. By looking through different studies and research papers the identified gap was of how nanosensors, nano-based encrypted communications, and self-healing nanomaterials can benefit Intrusion Detection Systems and are what is discussed and developed through the paper. The results from the research show that while most of these ideas are still in the stage of conceptualization, there are still some promising ideas that can be further developed. Nanosensors and neuromorphic computers are both able to improve the speed and accuracy of detecting intrusions. Alongside that, cryptographic hardware and optical encryption can assist in providing more security for the protected data. Organic Field-Effect Transistors and triboelectric nanogenerators can also be looked into as they both are forms of power supplies that allow for a more stable system that is also low maintenance. As such, these results bring forth the conclusion that nanotechnology holds promise for the future for contributing towards the development of Intrusion Detection Systems. This research paper provides ideas and technologies that can be further looked into as these conceptualizations of combined nanotechnology ideas become made into actual technologies.

Introduction

Nanotechnology is the branch of technology which focuses on the design, engineering, and manufacturing of materials at nanoscale. One of the earliest applications of nanotechnology can be observed through the stained glass artists of Medieval Europe. With gold and silver nanoparticles trapped in the glass, they created an array of reflected colors (Early Nanomaterials - International Institute for Nanotechnology, 2021). During Medieval times, there was no label tying art and nanotechnology together as it was not defined as nanotechnology. Over time the definition and usages of nanotechnology continued to expand and gained more meaning that applied to the term nanotechnology. The first conceptualized idea of nanotechnology was introduced in 1959 by the physicist Richard Feynman. He presented the concept through a lecture titled “There’s Plenty of Room at the Bottom” at the California Institute of Technology. This lecture introduced a hypothesis questioning “Why can’t we write the entire 24 volumes of the Encyclopedia Britannica on the head of a pin?”, and described a vision of using machines to construct smaller machines down to the molecular level. Later on, Japanese scientist Norio Taniguchi was the first person to use and define the term “nanotechnology” in 1974 as: “nanotechnology mainly consists of the processing of separation, consolidation, and deformation of materials by one atom or one molecule” (Bayda et. al, 2019).

Over time, the development, progress, and applications of nanotechnology have expanded to range from different applications in fields such as biology within the medical and healthcare sectors. Some of these applications in biology include targeted drug delivery where nanoparticles are designed to deliver drugs directly to cancer cells, and in the process minimize damage to healthy tissue and increase treatment efficacy. Additionally, tissue engineering also uses nanofibers and nanocomposites are used to create scaffolds that support the

growth and regeneration of tissues and organs. There are other applications understood through computer science which applies nanotechnology to electronics, networks, robotics, etc. Applications of nanotechnology incorporating computer science can also apply through the involvement of nanoelectronics: Nanomaterials used to develop faster and more efficient computing devices to innovative approaches in computer architecture and system design. Nanotechnology is also used to increase the amount of storage that is allowed through technologies like carbon nanotube transistors (Taha et al., 2022). Carbon nanotube transistors are a field-effect transistor, a transistor that uses electric fields to control the flow of currents through semiconductor channels, that uses carbon nanotubes rather than silicon for channel material. Another prospective application of nanotechnology will be in the development of cybersecurity.

There is much about cybersecurity that makes it relevant today and more important to look into. Cybersecurity is the practice of protecting systems, networks, and programs from digital attacks (Cisco, 2024). It was developed in the 1970s by Bob Thomas when he discovered that computer programs could move networks. The term moving networks refers to the capability of computer programs to transfer data from one computer to another by networks through source ports like routers. During this discovery it was also found that there was a trail left behind as the computer programs switched over networks. From this finding, Thomas created the program Creeper to allow it to travel across computer terminals which people used to interact with a computer system and expose this trail. In response to the concern that grew from the exposed vulnerabilities of computer systems, Ray Tomlinson created the software Reaper to eliminate Creeper. The field of computer technology was still developing at this time so as a result Reaper became the first ever antivirus software and Creeper was the first computer worm in history (Regali, 2022). With Creeper exposing vulnerabilities to the developing digital world at that time in the past, people's concern still lasted even after Reaper was created. Eventually, further developments of software began to show more liabilities in computer systems that solidified those fears. For this reason as well, the creation of cyber prevention systems were produced. A part of these security solutions was Intrusion Detection Systems, these became highly preferred in the early 2000s since the alternative of firewalls let threats right through with the advancement of cyber attacks (History of Intrusion Detection & Prevention, n.d.).

As a result, Intrusion Detection Systems would be used to maintain computer system privacy and when a system detects a threat that may be malicious, it sends an alert so that someone could take a look at the activity and analyze if it is a threat or not. Intruders can currently be classified into two separate categories, external and internal. External intruders attack without any authorized access to the system and outside of it, such as hacking into a system to get data from it, and internal intruders are already provided with some authority when attacking, such as someone leaking data they had access to (Jones et al., 2000). With traditional prevention techniques including authentication systems and firewalls for security, intrusion detection systems provide another layer of security to protect computer systems to prevent both types of intruders. Intrusion Detection Systems can also be classified into different categories, Host Based Intrusion Detection Systems (HIDS), Network Based Intrusion Detection Systems (NIDS), and hybrids of the two (GeeksforGeeks, 2022). These are the systems that are used to be able to match against the user behavior to detect intrusion. These systems also become more essential as their ability to detect threats in real-time and continuous monitoring improve the protection of the computer system. Currently, Intrusion Detection Systems are still developing their ability to assess threats and use different techniques to handle them. For these improvements, nanotechnology can provide a new solution to provide insight on the situation.

With today's society run by technology, a problem arises and presents itself bringing forth a necessity to protect all the data that Intrusion Detection Systems hold. These systems are usually assisted by using methods like cryptography which assists in encryption, decryption, and overall network security. Today, there are different threats that can infiltrate and gain access to private data and information of people as well as corporations, whether that be their employees' information or data. These can be done through means of phishing: Clicking scam emails that allow a hacker to get an individual's information; and there are also ITO (Internet of

Thing) attacks: Which are also cyber attacks targeting different types of electronic appliances and smart devices such as smartwatches, ring doorbells, internet routers, etc. Recent developments call more attention to questions on how to secure an individual's information. However, there are also developments in nanotechnology that are important to inquire further into as they can hold significance to the development of Intrusion Detection Systems. The findings from the combination of nanotechnology and Intrusion Detection Systems provide a new light on integrating them into the improvement of personal and confidential data protection, bringing up the question: How can nanotechnology contribute to cybersecurity regarding intrusion detection systems today?

Methodology

The objective of this study is to find how nanotechnology can be beneficial for Intrusion Detection Systems. During this research process, all research was done through a literature review rather than an in-field study. This was further looked into by searching for research papers that show applications to the field to first understand what there already is about the current conversation on Intrusion Detection Systems and nanotechnology. After researching it was found that there was a lack of studies that were on the application of nanotechnology in Intrusion Detection Systems. These specific gaps that were found and looked into were based on the nanotechnologies that could be found and those were on: How nanosensors can benefit Intrusion Detection Systems, nano-based encrypted communications can benefit Intrusion Detection Systems, and self-healing nanomaterials can benefit Intrusion Detection Systems. Similar research was done to find other papers and sources that would handle the gaps that were in Intrusion Detection Systems through the usage of nanotechnology. By identifying the gaps of this conversation, the process of getting documents that correlated with the gap was more efficient and led to the collection of multiple sources. Then by reading and sorting through them, the list was shortened and became more specified with how they applied to the previously identified gaps. These gaps in the current conversation garnered the collection of sources that were ultimately finalized into a condensed and more concise form. This process was done using only online resources and documentation as only a literature review was conducted. For that reason there was no ethical consideration required to be observed during the research process.

Literature Review

Nanotechnology is currently applied in many fields with one of them being in cybersecurity. Researchers are currently working in areas like nanoelectronics and nanocomputing to try and integrate those findings into computer systems architecture. They have also developed a tool referred to as quantum cryptography, a method of encryption that is able to use properties of quantum mechanics to be able to secure and transmit data in a secure way (Gillis, 2022). This will be able to provide a form of electronic security that is close to impossible for being able to crack. (*Nanotechnology and National Security - International Institute for Nanotechnology*, 2021). Quantum cryptography has also already begun to be in use in banks based on nanoscale architectures (Brode, 2023). Banks have used prototypes of quantum computer technology to process more complex calculations at a faster rate than current banking technology. These are just some of the current ideas being researched within the cybersecurity field using applications of nanotechnology. Though within that same field Intrusion Detection Systems do not have as much research on them. When searching for current information on Intrusion Detection Systems there has been a call for researching ways to develop and improve these systems as levels of cyber threats continue to increase (Khraisat et al., 2019). The gaps that have been previously specified involving nanosensors, nano-based encrypted communications, and self-healing nanomaterials will be able to provide information that will be further developed throughout this paper and allow for an understanding if these applications of nanotechnology in Intrusion Detection Systems will be able to contribute towards them.

While the application of nanotechnology and nanomaterials on Intrusion Detection Systems is still a developing concept, the two concepts are still promising candidates for improving the current state of Intrusion Detection Systems that can be used to describe and understand the materials that can be used for the application itself.

Nanosensors in Intrusion Detection Systems

Within nanotechnology are nanosensors that have potential to benefit Intrusion Detection Systems. Nanosensors are tiny platforms designed to detect and measure biological, chemical, environmental, or physical information at the level of the nanoscale (AZoNano, 2023)). They are also devices that can monitor and convert physical quantities into detectable and analyzable signals. They can be used to identify hardware tampering or the existence of malware that modifies system behaviors in an inconspicuous manner. There is discussion on how nanosensors can be used to monitor and handle more advanced threat detections and give early warnings about danger through biomedical usages. For biomedical uses, nanosensors are applied to processes like monitoring differentiation before a transplant for therapeutic applications. This also allows for smoother inspection of danger and detection of illness identification (Javaid et al., 2021). While the nanosensors in this instance are used for biomedical purposes, their abilities can also be converted for various purposes regarding Intrusion Detection Systems. As nanosensors are used to monitor risks and symptoms in a biomedical conversation, they can be used to monitor cyber systems and dangers within them from internal or external attacks when being considered in a technological conversation. This can apply to the early warning system for illness identification as it can be used to detect subtle cyber threats such as data breaches where sensitive information is leaked by hackers. The usage for biomedical necessities can be altered for Intrusion Detection Systems development if the nanosensors are reconfigured from the biomedical nanosensors. The assistance of the adaptive algorithms can also help with the converting process as they will be able to change and adjust to Intrusion Detection System usages instead. The nanosensors additionally improve the speed and precision of finding threats with their higher sensitivity and real time monitoring. Nanosensors can also be developed to have a part in the development of computer hardware.

Their role in the creation of neuromorphic computers is a development that can be further examined. Neuromorphic computing is a method of computer engineering where parts of a computer are modeled after systems that are in the human brain and nervous system. Their development stems from drawing from several disciplines including computer science, biology, mathematics, electronic engineering and physics all to create bio-inspired computer systems and hardware. Nanosensors allow these computing systems to interact with their surroundings and be able to process information that in a way mimics actual biological neural networks (Barney & Lutkevich, 2023). This can lead to the understanding that combining neuromorphic computing to the hardware innovation of Intrusion Detection Systems they can assist in strengthening more efficient and adaptive computing processes for analyzing detected data. They can further assist by being able to identify and report attacks more quickly and accurately. Using nanosensors will result in these neuromorphic computers having improved capabilities with their human-like intelligence and increased precision. Their application to Intrusion Detection Systems will additionally be able to evolve in real time through this way which will allow them to discern attacks with better accuracy as well.

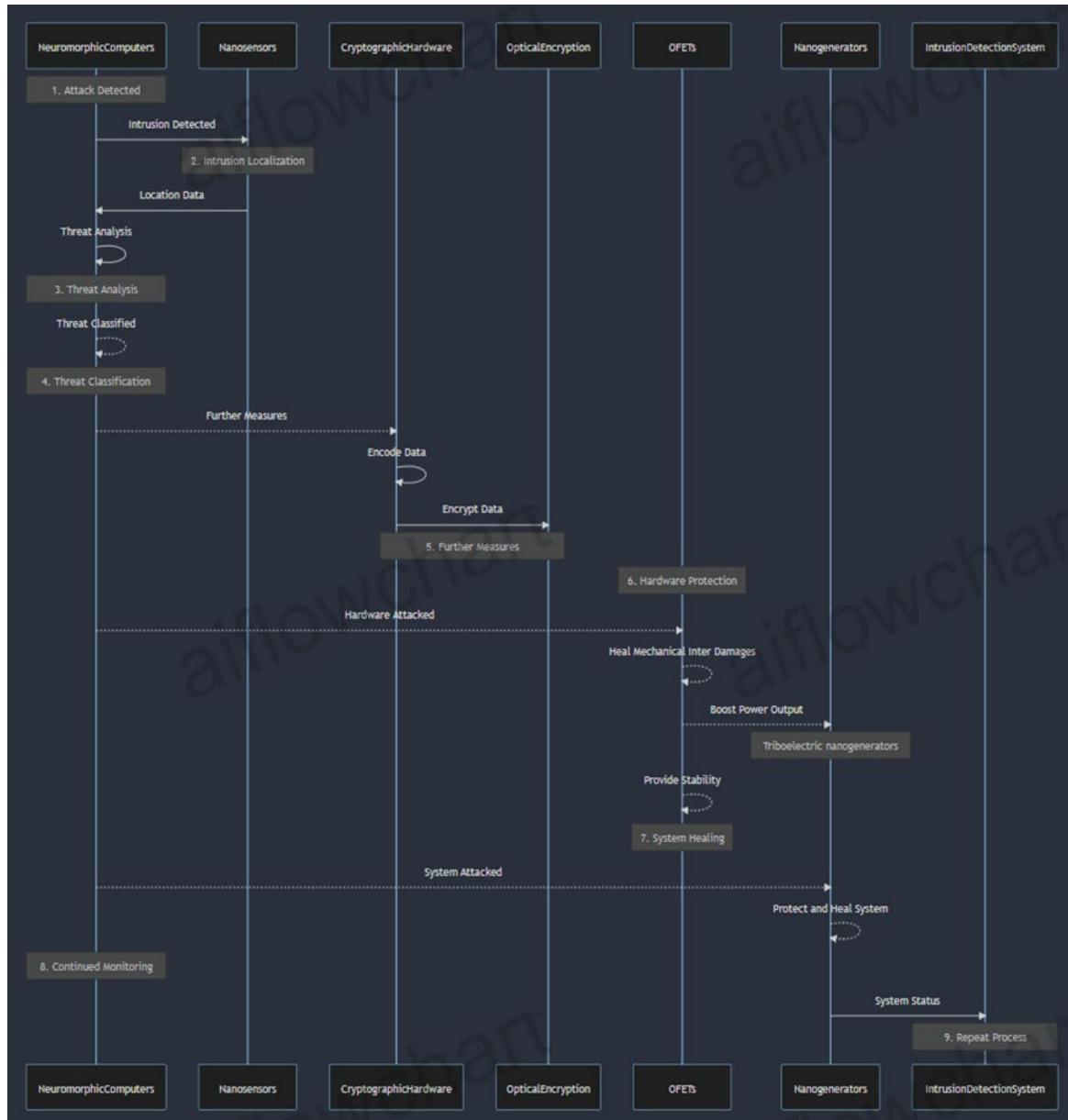
Nano-Based Encrypted Communications in Intrusion Detection Systems

There are methods involving encrypted communication which can improve Intrusion Detection Systems as they enable more enhanced protections for data in need of better safeguarding for better privacy and confidentiality. By applying the uses of nanotechnology to encrypted communications there are new paths to be looked into with this added development. Cryptography is the encrypted form of communication for converting data into a

code or formats, such as ciphertexts to prevent data leaks, and are essential for providing security for information. There is also discussion on how to integrate silicon with nanoelectronics for a combined approach of nanoscale systems and complementary metal-oxide-semiconductors. These are integrated circuits that are used in most chips or microchips today. An approach in this form of application would allow for a smooth transition with the beneficial aspects of both technologies that hold advantages for Intrusion Detection Systems. The method for this idea is to combine the parts of complementary metal-oxide-semiconductors technology that are already advantageous and instead include the flexibility and fabrication yield with nanoscale devices to them. These materials will then be assembled on a prefabricated nanowire fabric that will allow for higher function density (Masoumi et al., 2015). The prefabricated nanowire fabric will allow for the higher density function as it is a structural arrangement of nanowires that can be integrated into circuits, similar to the complementary metal-oxide-semiconductors. Doing so will lead to a cryptographic hardware: A specialized electronic device that is designed to perform cryptographic operations efficiently and securely including but not limited to encryption, decryption, etc. that are essential for securing data; that improves performance in areas of speed and a more compact hardware chip that is more space efficient as it is reduced in size. Using this advanced cryptographic hardware in Intrusion Detection Systems will offer improvements for security to prevent data leakages and better protection of the overall system.

Optical encryption can also be used to improve Intrusion Detection Systems. As optical encryption is a method used to secure data in the optical transport layer, which provides access to data, of a network by transforming the data with the use of an algorithm. This will make sure to make that data unreadable to anyone but those who it is meant for by using fiber based devices (Corporation, n.d.). This form of encryption is part of nanotechnology as it uses nanoscale materials to encrypt data. The application of optical encryption will involve benefits such as optically encoded data produced using nanoparticles can be verified using polarimetric speckle analysis and pattern recognition techniques (*Optica Publishing Group*, n.d.). Doing so will allow for Intrusion Detection Systems to use the form of encryption to be able to encrypt data and servers. Optical encryption also has the ability of real-time interfacing, which is used to support moving data into and out of master data hubs in real time (Reeve, 2013), as well as the movement of transactional data updates between applications and flexible processing in relation to freedom of light fields. This will make it more difficult for threats to access their targets as the encryption speed will be enhanced using nanotechnology.

Self-Healing Nanomaterials in Intrusion Detection Systems


In the field of nanotechnology, there is also the advancement of self healing material systems. These self healing polymers and nanocomposites can heal from impacted damage by mimicking the healing of biological organisms (Zhai et al., 2020). The healing is accomplished by polymers recognizing a stimulus that causes them to change their structure to reform and heal or restructure themselves. It can also be done through nanoparticles acting as reinforcements for the structure and acting as a bridge when healing different components. Self healing can be applied to Organic Field-Effect Transistors, these are a three part electronic device controlled by electricity current outputs that use organic molecules to transport electrons through a transistor channel. With the introduction of self healing material systems in Organic Field-Effect Transistors it will be easier to repair its mechanical parts without actual intervention from a person (Yue et al., 2022). By being able to heal mechanical parts, it opens up further possibilities for its usages and applications. In particular, when applied to Intrusion Detection Systems they will be able to protect its hardware better by being able to actively heal and repair the hardware and parts from attacks at that moment. This will also allow for longer lasting Organic Field-Effect Transistors as the self healing lets the transistor stay in better shape and need less maintenance.

The benefit of triboelectric nanogenerators can also be looked into as they are also a power supply similar to Organic Field-Effect Transistors. These devices are power generators that can convert mechanical energy gathered from an environment into electricity to power small devices like sensors. Current research has

also brought up that triboelectric nanogenerators can also substantially enhance output power (Gao et al., 2024). This nanogenerator can be applied to Intrusion Detection Systems to be able to increase their own efficiency and output accuracy to the computer system. This can be done by the assistance of polyurethane acrylate elastomers for a higher flexibility and elasticity rate and overall improves durability. As the polyurethane acrylate elastomers become the triboelectric layer, which generates the electrical charge, and also as the polymer matrix, also used for providing strength, for the conductor of triboelectric nanogenerators, their recovery ability after mechanical damage increases by 2500% (Mashkoor et. al., 2022). This form of self healing creates a triboelectric nanogenerator that is not only more stretchable, but also healable to be able to recover even while attacks on the Intrusion Detection Systems happen with its more expandable and stable properties.

Discussion

The overall research study has brought up a few different results when looking into how nanotechnology can assist intrusion detection systems. The review of literature has discussed how nanosensors, nano based encrypted communications, and self healing by nanotechnology can all be taken into consideration as they will be able to let Intrusion Detection Systems further advance and evolve to provide stronger protection for information and data.

Figure 1. Intrusion Detection System Attack. Source: Generated by AI Flowchart Diagram

When attacked, neuromorphic computers will be able to detect the intrusion in real time and nanosensors will be able to quickly and precisely locate the intrusion. From there, the neuromorphic computers can also analyze the data that they have collected about the threat and conclude if it is harmful or not. If the intrusion is classified as a threat then additional actions can be taken by utilizing the cryptographic hardware which can efficiently encode and serve as a barrier to protect the data and prevent any leakages. Optical encryption will also be encrypting the servers to add as another wall that will stop threats from passing through any further. With those systems of protections in place, if the threat somehow attacks the computer's hardware, the Organic Field-Effect Transistors can heal those mechanical internal damages. Along with the self healing that is applied to the transistor it provides more stability and structure to the hardware and Intrusion Detection System. This can all be done without an actual person having to step in and repair the system. The triboelectric nanogenerators power supply will be able to enhance the power output to further protect and help the system recover until the

threat is taken care of. Once the threat is handled, then the Intrusion Detection System continues to search for other possible threats within it and repeat this process. The advancement of the durability and compact hardware of these technologies also allow for the Intrusion Detection Systems to have better maintenance and lasting rate compared to how they would last without the provided self healing nanomaterials and effective precision from the nanotechnologies in locating threats.

Conclusion

In a final review of the findings from this research addressing the question: How can nanotechnology contribute to cybersecurity regarding intrusion detection systems today; there have been a few ways discovered. Nanotechnology's nanosensors, encrypted communication, and self healing technologies all have different approaches that can be taken into consideration. These specifics that were looked into lead to a few different understanding of what nanotechnology can offer Intrusion Detection Systems in the future. They provide enhancements to Intrusion Detection Systems including efficiency, stability, flexibility, and protection. These are all done through the process of the Intrusion Detection Systems are used for when confronting a threat. At the same time they also help with lengthening the span of use of the systems with less maintenance. The whole process becomes more automated as well due to the threats being dealt by the system itself and the recovery of damages that can also be self healed. This paper gives a way for future research to be able to have an earlier time to understand what techniques can be further looked into as nanotechnology continues to advance. As Intrusion Detection Systems are used much more today, their advancement is important for individuals living in a place where information can be accessed at any time with technology, and there are others who try to get access to another's information through that technology. While these conceptualized ideas are still in the beginning stage of development, they will allow for a new way for Intrusion Detection Systems to progress into a more developed system that is more secure in protecting data and information. The discussion of the above section explains one of many ways that nanotechnology can contribute to the future developments of Intrusion Detection Systems.

Limitations

While going through this paper, it is important to acknowledge some factors that should be taken into account. This paper only focuses on the impacts of Nanotechnology on Intrusion Detection Systems and not all of Cybersecurity. Nanotechnology in Intrusion Detection Systems is a topic that has not been thoroughly explored much at all yet. As such, most of the information discovered and discussed is much in theoretical use. The actual practical usage for some of these methods has not been tested whether it is because the technology for such procedures does not exist yet or that it is just an idea that has only been conceptualized. Due to most of these methods still only being in the very beginning stages, there were challenges finding sources that gave clear and exact impacts and usages of what the technologies discussed are capable of. In that regard there became the need to find different applications of nanotechnologies and understand them to see if they could be further introduced into Intrusion Detection Systems and used there as well. The process of finding different technologies was also a challenge as there were close to no sources that were directly regarding Intrusion Detection Systems at the time.

Acknowledgments

I would like to express my greatest appreciation to Gifted Gabber, Dr. Lilova, and Professor Virgil for their continuous assistance and support throughout this research paper. Thank you Gifted Gabber for having this

opportunity to take a chance and write a paper that allowed me to try something I would not have thought I would have tried before. Knowing that I could always reach out if I ever had a question was a support that kept me going. I give my gratitude to Dr. Lilova who continuously helped me enhance my writing content and make it the best I could through advice and feedback. Dr. Lilova had also helped me get a starting point on this research topic by giving me points that I could start looking into right away. I would also like to express my sincere thanks to Professor Virgil who helped me maintain a consistent format and tips for my research paper and gave encouragement along the way. Without that advice I would not have known how to properly go about writing a research paper with just a literature review. I would also like to give thanks to my parents who successfully provided me this opportunity and encouraged me to take on this paper; they also continuously supported me along the way. On a last note, I would like to thank a close friend who read through this whole paper and gave me feedback that was incredibly helpful during my editing process.

References

AIFlowchart. (n.d.). <https://aiflowchart.io/>

AZoNano. (2023, July 18). Nanosensors: definition, applications and how they work. <https://www.azonano.com/article.aspx?ArticleID=1840>

Barney, N., & Lutkevich, B. (2023, April 24). neuromorphic computing. Enterprise AI. <https://www.techtarget.com>

Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2019). The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. *Molecules*, 25(1), 112. <https://doi.org/10.3390/molecules25010112>

Brode, B. (2023, December 8). *How nanotechnology will disrupt cybersecurity*. <https://www.darkreading.com/threat-intelligence/how-nanotechnology-will-disrupt-cybersecurity>

Corporation, C. (n.d.). What is optical encryption? <https://www.ciena.com>.

Gao, Y., He, L., Liu, D., Zhang, J., Zhou, L., Wang, Z. L., & Wang, J. (2024b). Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency. *Nature Communications*, 15(1). <https://doi.org/10.1038/s41467-024-48456-1>

GeeksforGeeks. (2022, July 12). *Difference between HIDs and NIDs*. GeeksforGeeks. <https://www.geeksforgeeks.org/difference-between-hids-and-nids/>

Gillis, A. S. (2022, January 28). *quantum cryptography*. Security. <https://www.techtarget.com>

History of Intrusion Detection & Prevention. (n.d.). Secureworks. <https://www.secureworks.com/blog/the-evolution-of-intrusion-detection-prevention>

Javaid, M., Haleem, A., Singh, R. P., Rab, S., & Suman, R. (2021). Exploring the potential of nanosensors: A brief overview. *Sensors International*, 2, 100130. <https://doi.org/10.1016/j.sintl.2021.100130>

Jones, A. K., Sielken, R. S., & Department of Computer Science, University of Virginia. (2000). *Computer System Intrusion Detection: a survey*. <https://www.princeton.edu>

Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of intrusion detection systems: techniques, datasets and challenges. *Cybersecurity*, 2(1). <https://doi.org/10.1186/s42400-019-0038-7>

Mashkoor, F., Lee, S. J., Yi, H., Noh, S. M., & Jeong, C. (2022). Self-Healing materials for electronics applications. *International Journal of Molecular Sciences*, 23(2), 622. <https://doi.org/10.3390/ijms23020622>

Masoumi, M., Shi, W., & Xu, L. (2015b). Nanoscale cryptography: opportunities and challenges. *Nano Convergence*, 2(1). <https://doi.org/10.1186/s40580-015-0052-8>

Nanotechnology and National Security - International Institute for Nanotechnology. (2021, June 30). International Institute for Nanotechnology. <https://www.iinano.org/security/>

Optica Publishing Group. (n.d.). <https://opg.optica.org/aop/fulltext.cfm?uri=aop-9-2-218&id=362741>

Regali, V. (2022, October 20). History of Cyber Security - Cyber Security degree. Cyber Security Degree. <https://cyber-security.degree/resources/history-of-cyber-security/>

Reeve, A. (2013). Conclusion to managing data in motion. In Elsevier eBooks (pp. 157–166). <https://doi.org/10.1016/b978-0-12-397167-8.00022-4>

Taha, T. B., Barzinjy, A. A., Hussain, F. H. S., & Nurtayeva, T. (2022). Nanotechnology and Computer Science: Trends and advances. *Memories, Materials, Devices, Circuits and Systems*, 2, 100011. <https://doi.org/10.1016/j.memori.2022.100011>

What is Nanotechnology? - International Institute for Nanotechnology. (2022, September 2). International Institute for Nanotechnology. <https://www.iinano.org/what-is-nanotechnology/>

What is cybersecurity? (2024, February 22). Cisco. <https://www.cisco.com/c/en/us/products/security/what-is-cybersecurity.html>

Yue, H., Wang, Z., & Zhen, Y. (2022b). Recent advances of Self-Healing electronic materials applied in organic Field-Effect transistors. *ACS Omega*, 7(22), 18197–18205. <https://doi.org/10.1021/acsomega.2c00580>

Zhai, L., Narkar, A., & Ahn, K. (2020). Self-healing polymers with nanomaterials and nanostructures. *Nano Today*, 30, 100826. <https://doi.org/10.1016/j.nantod.2019.100826>