

Immunotherapy in Brain Cancer

Ajitesh Nair

Panther Creek High School, USA

ABSTRACT

Brain cancer remains a significant challenge in oncology, necessitating novel treatment approaches to improve patient outcomes. Immunotherapy has emerged as a promising strategy for targeting brain tumors by harnessing the body's immune system. This paper provides a thorough examination of immunotherapy in brain cancer, exploring its mechanisms, challenges, and potential strategies to enhance efficacy. Drawing on existing literature and research, the paper discusses the role of immunotherapy in addressing the complexities of brain cancer and highlights the need for further investigation to optimize treatment strategies.

Introduction

Brain cancer presents unique challenges in treatment due to its location within the central nervous system and the limitations of conventional therapies. Surgical interventions, radiation, and chemotherapy often yield suboptimal outcomes, prompting the exploration of alternative approaches such as immunotherapy. While immunotherapy holds promise for combating brain cancer, its effectiveness is influenced by factors such as the immunosuppressive microenvironment and tumor heterogeneity. Understanding the mechanisms of immunotherapy resistance is crucial for developing more effective treatment strategies.

Immunotherapy Mechanisms and Challenges

Immunotherapy exploits the body's immune system to target and destroy cancer cells, offering a potentially less toxic and more durable treatment option for brain cancer patients. Checkpoint inhibitors, chimeric antigen receptor (CAR) T-cell therapy, and tumor-infiltrating lymphocytes (TILs) are among the immunotherapeutic approaches being investigated for brain cancer. However, the blood-brain barrier poses a significant challenge by limiting the delivery of immunotherapeutic agents to brain tumors. Strategies to overcome this barrier, such as focused ultrasound and nanoparticle-based delivery systems, are under investigation.

Tumor Heterogeneity and Immunotherapy Resistance

The heterogeneity of brain tumors presents another obstacle to successful immunotherapy. Glioblastomas, in particular, exhibit significant molecular and cellular heterogeneity, with multiple subpopulations of cancer cells evading immune surveillance. Precision medicine approaches, including single-cell sequencing and liquid biopsy, hold promise for identifying biomarkers and tailoring immunotherapy strategies to individual patients. Additionally, the tumor microenvironment plays a critical role in immunotherapy response, with immunosuppressive factors such as regulatory T cells and myeloid-derived suppressor cells inhibiting anti-tumor immune responses. Immunotherapy harnesses the body's immune system to target and eliminate cancer cells, offering a potentially less toxic and more durable treatment option for patients with brain cancer. Checkpoint inhibitors, such as anti-PD-1 and anti-CTLA-4 antibodies, work by blocking immune checkpoints that cancer cells exploit to evade detection and destruction by the immune

system. These inhibitors unleash the immune response, allowing T cells to recognize and attack tumor cells more effectively.

Chimeric antigen receptor (CAR) T-cell therapy is another promising approach that involves genetically engineering patients' T cells to express CARs, which enable them to recognize and destroy cancer cells expressing specific antigens. In brain cancer, CAR T-cell therapy targeting antigens such as EGFRvIII and IL13Ra2 has shown encouraging results in preclinical studies and early-phase clinical trials.

Despite the promise of immunotherapy, several challenges must be addressed to maximize its efficacy in brain cancer treatment. The blood-brain barrier (BBB), a protective barrier that regulates the passage of substances from the bloodstream into the brain, limits the delivery of immunotherapeutic agents to brain tumors. Strategies to enhance BBB permeability, such as focused ultrasound and nanotechnology-based drug delivery systems, are being explored to improve the delivery of immunotherapy to brain tumors.

Moreover, the immunosuppressive tumor microenvironment poses a significant obstacle to successful immunotherapy. Brain tumors create an immunosuppressive milieu characterized by regulatory T cells, myeloid-derived suppressor cells, and immunosuppressive cytokines, which inhibit anti-tumor immune responses and promote tumor progression. Overcoming this immunosuppression is essential for unleashing the full potential of immunotherapy in brain cancer.

The heterogeneity of brain tumors presents a significant challenge to successful immunotherapy. Glioblastomas, the most common and aggressive primary brain tumors, exhibit extensive intratumoral and intertumoral heterogeneity at the molecular, cellular, and phenotypic levels. This heterogeneity contributes to variations in treatment response and the development of resistance to immunotherapy.

Single-cell sequencing technologies have enabled researchers to dissect the molecular and cellular landscape of glioblastomas at unprecedented resolution, revealing distinct subpopulations of cancer cells with diverse immune evasion mechanisms. By characterizing these subpopulations and identifying targetable vulnerabilities, researchers can develop more effective immunotherapy strategies tailored to individual patients' tumor profiles.

Liquid biopsy techniques, such as circulating tumor DNA (ctDNA) analysis and extracellular vesicle profiling, offer minimally invasive methods for monitoring tumor evolution and treatment response in real-time. These techniques provide valuable insights into the dynamics of tumor heterogeneity and clonal evolution, facilitating the early detection of treatment resistance and the adaptation of personalized treatment approaches.

Furthermore, advances in spatial transcriptomics and multiplex immunofluorescence imaging allow researchers to map the spatial distribution of immune cells and tumor subpopulations within the tumor microenvironment. By unraveling the complex interactions between immune cells and cancer cells, researchers can identify immune evasion mechanisms and devise strategies to overcome immunotherapy resistance in brain cancer.

Clinical Trials and Emerging Therapies:

Numerous clinical trials are underway to evaluate the safety and efficacy of immunotherapy in brain cancer. These trials assess various immunotherapeutic agents, combination therapies, and treatment modalities, aiming to improve patient outcomes and help prolong survival. Emerging therapies such as oncolytic viruses, cancer vaccines, and adoptive cell therapies offer additional methods for enhancing the impact of immunotherapy and overcoming resistance mechanisms. By targeting specific molecular pathways and immune checkpoints, these therapies aim to use the immune system to combat brain tumors. Trials encompass various immunotherapeutic approaches, including checkpoint inhibitors, CAR T-cell therapy, cancer vaccines, and adoptive cell therapies. In addition, there are other treatment methods such as chemotherapy, radiation therapy, and other various targeted therapies.

Checkpoint inhibitors targeting programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have demonstrated modest clinical activity in patients with recurrent glioblastoma in early-phase clinical trials. Pembrolizumab, nivolumab, and ipilimumab are among the checkpoint inhibitors currently being investigated in clinical trials for brain cancer.

CAR T-cell therapy holds promise as a targeted immunotherapeutic approach for brain cancer, particularly in the treatment of recurrent glioblastoma and other high-grade gliomas. Early-phase clinical trials evaluating CAR T-cell therapies targeting EGFRvIII, IL13Ra2, and HER2 have shown encouraging results, with some patients achieving durable responses and prolonged survival.

In addition to checkpoint inhibitors and CAR T-cell therapy, other immunotherapeutic strategies are being explored to enhance the efficacy of immunotherapy in brain cancer. Cancer vaccines, such as dendritic cell vaccines and peptide vaccines targeting tumor-specific antigens, aim to stimulate the immune system to recognize and attack cancer cells. Clinical trials evaluating cancer vaccines alone or in combination with other immunotherapies are ongoing in patients with glioblastoma and other types of brain tumors.

Oncolytic viruses represent another innovative approach to immunotherapy in brain cancer. These viruses are engineered to selectively infect and replicate within cancer cells, leading to tumor cell lysis and the release of tumor antigens, which stimulate anti-tumor immune responses. Clinical trials investigating oncolytic viruses, such as talimogene laherparepvec (T-VEC) and DNX-2401, in combination with other immunotherapies or standard treatments are underway in patients with glioblastoma and other malignant brain tumors.

Furthermore, adoptive cell therapies, such as tumor-infiltrating lymphocyte (TIL) therapy and natural killer (NK) cell therapy, are being evaluated in clinical trials for brain cancer. TIL therapy involves isolating immune cells from the patient's tumor, expanding them, and reinfusing them back into the patient to target and destroy cancer cells. NK cell therapy utilizes natural killer cells, a type of immune cell that can recognize and kill cancer cells without prior sensitization, to eliminate tumor cells.

Combination immunotherapy approaches, incorporating multiple immunotherapeutic agents or combining immunotherapy with standard treatments, are being investigated to enhance treatment efficacy and overcome resistance mechanisms in brain cancer. These combination strategies aim to synergistically target different components of the immune system and tumor microenvironment to maximize anti-tumor immune responses and improve patient outcomes.

In conclusion, clinical trials evaluating immunotherapy in brain cancer are rapidly advancing our understanding of the immune response to brain tumors and providing new treatment options for patients with this challenging disease. By exploring diverse immunotherapeutic approaches, including checkpoint inhibitors, CAR T-cell therapy, cancer vaccines, oncolytic viruses, and adoptive cell therapies, researchers aim to optimize treatment strategies and improve outcomes for patients with brain cancer.

The research on immunotherapy in brain cancer underscores the critical need for innovative solutions to address the challenges inherent in treating this complex disease. Immunotherapy has emerged as a promising avenue, offering new hope for patients who face limited treatment options and poor prognoses. However, despite its potential, immunotherapy faces significant obstacles in effectively targeting brain tumors and overcoming resistance mechanisms.

One of the primary challenges in immunotherapy for brain cancer is the blood-brain barrier (BBB), a specialized structure that protects the brain from harmful substances but also impedes the delivery of therapeutic agents. Studies have shown that the BBB can restrict the penetration of immune cells and therapeutic antibodies into brain tumors, limiting the efficacy of immunotherapy interventions. Strategies aimed at bypassing or modulating the BBB, such as focused ultrasound and nanoparticle-based delivery systems, are being explored to enhance the delivery of immunotherapeutic agents to brain tumors.

Furthermore, the heterogeneity of brain tumors presents a formidable obstacle to successful immunotherapy. Glioblastomas, in particular, exhibit significant molecular and cellular heterogeneity, with diverse subpopulations of cancer cells possessing distinct immune evasion mechanisms. This heterogeneity complicates treatment strategies and contributes to the development of resistance to immunotherapy. Precision medicine approaches, including single-cell sequencing and liquid biopsy, are being investigated to identify biomarkers and tailor immunotherapy strategies to individual patients' tumor characteristics.

Moreover, understanding the mechanisms of resistance to immunotherapy in brain cancer is essential for optimizing treatment outcomes. Despite the promise of immunotherapy, not all patients respond to treatment, and resistance can develop over time. Investigating the factors that contribute to resistance, such as tumor microenvironmental factors and immune checkpoint signaling pathways, is critical for developing strategies to overcome resistance and improve patient outcomes.

In recent years, researchers have made significant strides in elucidating the complex interplay between the immune system and brain tumors. Preclinical and clinical studies have identified novel immunotherapeutic targets and therapeutic combinations that hold promise for enhancing the efficacy of immunotherapy in brain cancer. Additionally, advances in imaging technologies and biomarker discovery have facilitated the development of personalized treatment approaches tailored to the unique characteristics of individual patients' tumors.

Despite these advancements, challenges remain in translating preclinical findings into clinical practice and addressing the practical limitations of immunotherapy, such as treatment-related toxicities and logistical barriers. Collaborative efforts between researchers, clinicians, and industry partners are essential for advancing the field of immunotherapy and bringing innovative treatment modalities to patients with brain cancer.

In conclusion, immunotherapy represents a promising frontier in the treatment of brain cancer, offering new hope for patients facing this devastating disease. However, significant challenges persist, including the blood-brain barrier, tumor heterogeneity, and mechanisms of resistance to treatment. Continued research efforts aimed at overcoming these challenges and optimizing immunotherapy strategies are essential for improving outcomes and transforming the landscape of brain cancer treatment.

Implications of Viral Mutations:

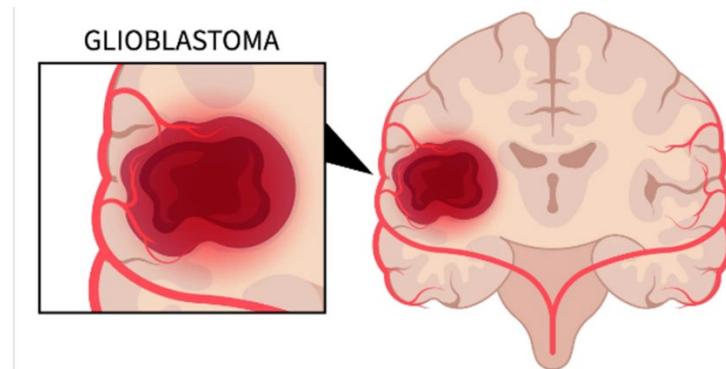
Viral mutations, particularly in influenza viruses, can have profound implications for public health and healthcare systems worldwide. The ability of influenza viruses to mutate rapidly contributes to the challenge of controlling and preventing seasonal outbreaks and pandemics. These mutations can lead to the emergence of new strains with increased transmissibility, virulence, or resistance to existing treatments.

One significant implication of viral mutations is the potential for vaccine resistance. Influenza vaccines are formulated based on predictions of the prevalent strains for each flu season. However, if the circulating strains undergo significant mutations, the effectiveness of the vaccine can be compromised. This phenomenon, known as vaccine escape, poses a considerable threat to public health efforts aimed at controlling influenza infections.

Moreover, viral mutations can impact the severity of illness caused by influenza viruses. Certain mutations may result in the virus becoming more pathogenic, leading to more severe symptoms and higher rates of hospitalization and mortality. Understanding the genetic changes driving these variations in virulence is crucial for developing targeted treatment strategies and mitigating the impact of influenza outbreaks. Viral mutations, particularly in influenza viruses, can have profound implications for public health and healthcare systems worldwide. The ability of influenza viruses to mutate rapidly contributes to the challenge of controlling and preventing seasonal outbreaks and pandemics. These mutations can lead to the emergence of new strains with increased transmissibility, virulence, or resistance to existing treatments.

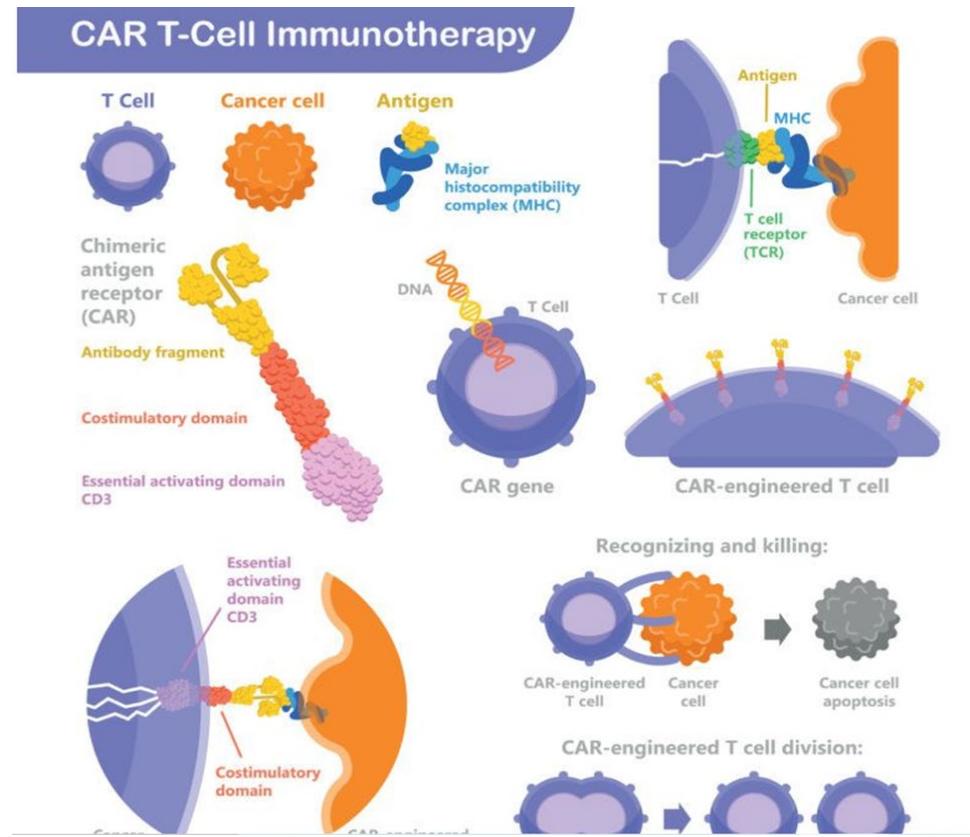
One significant implication of viral mutations is the potential for vaccine resistance. Influenza vaccines are formulated based on predictions of the prevalent strains for each flu season. However, if the circulating strains undergo significant mutations, the effectiveness of the vaccine can be compromised. This phenomenon, known as vaccine escape, poses a considerable threat to public health efforts aimed at controlling influenza infections.

Moreover, viral mutations can impact the severity of illness caused by influenza viruses. Certain mutations may result in the virus becoming more pathogenic, leading to more severe symptoms and higher rates of hospitalization and mortality. Understanding the genetic changes driving these variations in virulence is crucial for developing targeted treatment strategies and mitigating the impact of influenza outbreaks.



In addition to vaccine resistance and increased virulence, viral mutations can also affect the efficacy of anti-viral therapies. Antiviral drugs such as oseltamivir (Tamiflu) and zanamivir (Relenza) target specific viral proteins involved in viral replication. However, mutations in these viral proteins can lead to drug resistance, rendering antiviral therapies less effective. Continuous surveillance of circulating influenza strains and monitoring for signs of drug resistance are essential for guiding treatment decisions and maintaining effective control measures.

Furthermore, viral mutations can pose challenges for diagnostic testing and surveillance efforts. Changes in viral antigens or genomic sequences may affect the accuracy of diagnostic tests such as polymerase chain reaction (PCR) assays and antigen detection tests. As a result, ongoing adaptation of diagnostic assays and surveillance systems is necessary to ensure timely detection and monitoring of circulating influenza strains.


To address the challenges posed by viral mutations, ongoing research efforts focus on developing new strategies for influenza prevention, treatment, and control. These efforts include the development of universal influenza vaccines designed to provide broad protection against multiple strains, as well as the exploration of novel antiviral drugs with activity against diverse influenza strains. Additionally, advances in genomic sequencing technologies and bioinformatics tools enable rapid characterization of circulating influenza viruses and identification of emerging threats.

In conclusion, viral mutations represent a significant challenge for influenza control and prevention efforts, with implications for vaccine efficacy, antiviral therapy, diagnostic testing, and surveillance. By understanding the mechanisms driving viral evolution and the impact of genetic changes on virus behavior, researchers can develop strategies to mitigate the effects of viral mutations and better prepare for future influenza outbreaks and pandemics.

Figure 1. *Glioblastoma Brain Tumors* | Advocate Health Care. (n.d.). [www.advocatehealth.com](https://www.advocatehealth.com/health-services/brain-spine-institute/brain-spine-tumors/glioblastoma). <https://www.advocatehealth.com/health-services/brain-spine-institute/brain-spine-tumors/glioblastoma>

This image clearly illustrates a tumor in the brain which was caused by glioblastoma. Glioblastoma can cause many problems such as headaches, memory loss, imbalance, fatigue, and seizures. The chances of survival also drastically decrease in a glioblastoma patient. The average survival time in a glioblastoma patient is 1 to 1.5 years. According to clinical trials by the brain tumor charity, only 25% of glioblastoma patients survive more than one year and only a mere 5% of patients survive for more than 5 years. This proves the point that glioblastoma is very dangerous and deadly to humans and as the image shows, the blood supply is going to the tumor and the tumor is affecting the rest of the brain and body in a negative manner.

Figure 2. *The Power of Immunotherapy for Brain Cancer.* (2021, January 10). Pacific Neuroscience Institute. <https://www.pacificneuroscienceinstitute.org/blog/brain-tumor/the-power-of-immunotherapy/>

This image shows CAR T cell therapy, which is a type of immunotherapy in cancer treatment that uses T cells to locate and destroy cancer cells effectively. The process starts by removing the blood from the patient to extract the T cells. The second step is to insert gene for CAR and make CAR T cells in the lab. The third step is to use the CAR protein in the CAR T cell and grow millions of CAR T cells. The fourth step is to insert the CAR T cells into the patient and the fifth and final step is the inserted CAR T cells bind to the cancer cells and kill all of them. This method illustrates one of the ways that immunotherapy treatment can be used to help cure and eliminate cancer from within the body.

Prevention Strategies

In addition to traditional vaccination approaches, there are emerging strategies for preventing viral mutations and controlling influenza infections. One promising avenue is the development of universal influenza vaccines designed to provide broad protection against multiple strains, including those with antigenic variations due to mutations. These vaccines target conserved regions of the virus that are less prone to genetic changes, offering more durable immunity.

Furthermore, advancements in antiviral therapies and treatment modalities hold promise for managing influenza infections and reducing the likelihood of viral mutations. Novel antiviral drugs that target essential viral components, such as the viral polymerase or fusion proteins, can inhibit viral replication and limit the spread of mutated strains. Additionally, combination therapies that target multiple stages of the viral lifecycle may reduce the risk of drug resistance and enhance treatment efficacy.

Another innovative approach involves leveraging host-directed therapies to modulate the immune response and enhance host resistance to influenza viruses. By targeting host factors involved in viral replication or pathogenesis, these therapies can disrupt the virus-host interaction and reduce the impact of viral mutations on disease progression. Immunomodulatory agents, such as interferons or monoclonal antibodies, are being explored for their potential to bolster innate immune defenses and limit viral spread.

Conclusion

In conclusion, viral mutations play a significant role in shaping the dynamics of influenza infections and pose challenges for disease control and prevention. Understanding the mechanisms driving viral evolution and the implications of genetic changes is essential for developing effective strategies to combat influenza outbreaks and mitigate their impact on global health. By leveraging advances in vaccination, antiviral therapies, and host-directed interventions, we can enhance our ability to prevent viral mutations and reduce the burden of influenza-related illness and mortality. Continued research and collaboration are critical for staying ahead of evolving viral threats and safeguarding public health in the face of emerging infectious diseases. Immunotherapy holds promise as a transformative treatment approach for brain cancer, offering new hope for patients with this devastating disease. Despite challenges such as tumor heterogeneity and immunotherapy resistance, ongoing research efforts continue to advance our understanding of the immune response to brain tumors and develop innovative therapeutic strategies. By addressing these challenges and leveraging the power of the immune system, we can usher in a new era of precision medicine for brain cancer treatment.

Acknowledgments

I would like to thank my advisor for the valuable insight provided to me on this topic.

References

A new strategy to attack aggressive brain cancer shrunk tumors in two early tests. (2024, March 13). AP News. <https://apnews.com/article/brain-cancer-tumor-glioblastoma-immunotherapy-4cc8a6dd8ae016ec1c4500c48a0fe1af>

Becker, A. P., Sells, B. E., Haque, S. J., & Chakravarti, A. (2021). Tumor Heterogeneity in Glioblastomas: From Light Microscopy to Molecular Pathology. *Cancers*, 13(4), 761. <https://doi.org/10.3390/cancers13040761>

Brain Cancer Immunotherapy. (n.d.). Biotherapy International. Retrieved May 31, 2024, from <https://ibiotherapy.com/immunotherapy/brain-cancer/>

Brain cancer patient doing well after world-first immunotherapy treatment. (n.d.). University College London Hospitals NHS Foundation Trust. Retrieved May 31, 2024, from <https://www.uclh.nhs.uk/news/brain-cancer-patient-doing-well-after-world-first-immunotherapy-treatment>

Brain Tumor Immunotherapy. (n.d.). Children's Hospital Los Angeles. Retrieved May 31, 2024, from <https://www.chla.org/brain-tumor-center/diagnosis-and-treatments/brain-tumor-immunotherapy>

CAR T Cell Therapy. (2022). Pennmedicine.org. <https://www.pennmedicine.org/cancer/navigating-cancer-care/treatment-types/immunotherapy/what-is-car-t-therapy#:~:text=What%20Is%20CAR%20T%20Cell>

Cleveland Clinic. (2023). *The blood-brain barrier: Out with the bad, in with the good.* Cleveland Clinic. <https://my.clevelandclinic.org/health/body/24931-blood-brain-barrier-bbb>

Find clinical trials. (n.d.). Mayo Clinic. <https://www.mayoclinic.org/departments-centers/brain-tumor-program/sections/clinical-trials/rsc-20439939>

Glioblastoma Brain Tumors | Advocate Health Care. (n.d.). [Www.advocatehealth.com](http://www.advocatehealth.com).
<https://www.advocatehealth.com/health-services/brain-spine-institute/brain-spine-tumors/glioblastoma>

Glioblastoma: Symptoms, Causes, Treatment & Prognosis. (n.d.). Cleveland Clinic.
<https://my.clevelandclinic.org/health/diseases/17032-glioblastoma>

Gunasegaran, B., Ashley, C. L., Marsh-Wakefield, F., Guillemin, G. J., & Heng, B. (2024). Viruses in glioblastoma: an update on evidence and clinical trials. *BJC Reports*, 2(1), 1–21.
<https://doi.org/10.1038/s44276-024-00051-z>

How does Immunotherapy for Brain Cancer Work? (n.d.). American Oncology Institute. Retrieved May 31, 2024, from <https://www.americanoncology.com/blogs/how-does-immunotherapy-for-brain-cancer-work>

Immunotherapy for Brain Cancer. (n.d.). Cancer Research Institute.
<https://www.cancerresearch.org/cancer-types/brain-cancer>

Kivi, R. (2012, July 25). *Brain Cancer*. Healthline; Healthline Media.
<https://www.healthline.com/health/brain-cancer>

National Cancer Institute. (2013, December 6). *CAR T Cells: Engineering Immune Cells to Treat Cancer - NCI*. [Www.cancer.gov](http://www.cancer.gov). <https://www.cancer.gov/about-cancer/treatment/research/car-t-cells#:~:text=CAR%20T%20cell%20therapy%3A%20A%20%22living%20drug%22&text=They%20are%20made%20by%20collecting>

National Cancer Institute. (2022). *Immune Checkpoint Inhibitors*. National Cancer Institute; Cancer.gov.
<https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors>

Nieblas-Bedolla, E., Nayyar, N., Singh, M., Sullivan, R. J., & Brastianos, P. K. (2020). Emerging Immunotherapies in the Treatment of Brain Metastases. *The Oncologist*, 26(3), 231–241.
<https://doi.org/10.1002/onco.13575>

Odom, K. (2021, September 28). *New Immunotherapy Study for Glioblastoma - NCI*. [Www.cancer.gov](http://www.cancer.gov).
<https://www.cancer.gov/rare-brain-spine-tumor/blog/2021/glioblastoma-immunotherapy-study>

Rocha Pinheiro, S. L., Lemos, F. F. B., Marques, H. S., Silva Luz, M., de Oliveira Silva, L. G., Faria Souza Mendes dos Santos, C., da Costa Evangelista, K., Calmon, M. S., Sande Loureiro, M., & Freire de Melo, F. (2023). Immunotherapy in glioblastoma treatment: Current state and future prospects. *World Journal of Clinical Oncology*, 14(4), 138–159. <https://doi.org/10.5306/wjco.v14.i4.138>

Sampson, J. H., Gunn, M. D., Fecci, P. E., & Ashley, D. M. (2019). Brain immunology and immunotherapy in brain tumours. *Nature Reviews Cancer*, 20(1), 12–25. <https://doi.org/10.1038/s41568-019-0224-7>

Sampson, J. H., Maus, M. V., & June, C. H. (2017). Immunotherapy for Brain Tumors. *Journal of Clinical Oncology*, 35(21), 2450–2456. <https://doi.org/10.1200/jco.2017.72.8089>

The Brain Tumour Charity. (2020). *Glioblastoma Prognosis | Brain Tumour Survival Rates*. <https://www.thebraintumourcharity.org/brain-tumour-diagnosis-treatment/types-of-brain-tumour-adult/glioblastoma/glioblastoma-prognosis/>

The Power of Immunotherapy for Brain Cancer. (2021, January 10). Pacific Neuroscience Institute.
<https://www.pacificneuroscienceinstitute.org/blog/brain-tumor/the-power-of-immunotherapy/>

Why Some Brain Tumors Respond to Immunotherapy. (2019, February 15). Columbia University Irving Medical Center. <https://www.cuimc.columbia.edu/news/why-some-brain-tumors-respond-immunotherapy>