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ABSTRACT 

This study explores the integration of Convolutional Neural Networks (CNNs) into surgical procedures to ad-
dress the critical issue of retained surgical instruments (RSIs), enhancing patient safety. RSIs are when a foreign 
object is unintentionally left within a patient after surgery or other invasive procedures. This paper discusses 
challenges associated with manual counting methods and the potential of CNNs in automating surgical tool 
recognition. It employs an experimental design to investigate the impact of model hyperparameters on machine 
learning performance, utilizing the "Labeled Surgical Tools and Images" dataset for training. Preprocessing 
techniques, data augmentation, and Dropout regularization enhanced model robustness. Results from multiple 
training trials demonstrate the efficacy of the CNN-based model in accurately identifying and classifying sur-
gical instruments, even in limited data scenarios. This research identifies overfitting as a challenge and ad-
dresses it through model adjustments and regularization techniques; it also highlights the findings’ implications 
for improving surgical instrument count accuracy and enhancing patient safety. This study concludes by em-
phasizing the transformative potential of CNNs in surgical practice and the importance of ongoing research 
further to advance machine learning technologies in real-world surgical settings. 

Introduction 

Surgical procedures are transforming by integrating cutting-edge technologies, particularly CNNs.  The issue 
of surgical instrument count accuracy during surgeries is paramount to ensure patient safety. About a dozen 
sponges and other surgical instruments are left inside patients' bodies every day in the United States, with ap-
proximately 70% of the total items left being sponges and the remaining 30% being surgical instruments such 
as clamps and retractors (Gawande et al., 2003). Retained surgical instruments (RSIs) are common and are 
between 0.3 and 1.0 per 1,000 abdominal operations (Zejnullahu et al., 2017). Manual counting methods are 
prone to errors due to insufficient organization and communication between surgical staff, leading to severe 
complications (Gawande et al., 2003; Zejnullahu et al., 2017). In some cases, these retained objects can result 
in sepsis or death, as well as localized pain, discomfort, and bloating. This problem is entirely avoidable; ma-
chine learning algorithms can be utilized to improve this process. 

In this paper, the author discusses the challenges associated with manual counting and machine learn-
ing and the ethical concerns surrounding data collection for such models, as surgical data cannot be collected 
or tested. It also discusses the expansive realm of CNN applications within surgical tool recognition, examining 
the intricacies of real-time identification and classification. This research aims to explore the development of a 
machine learning model optimized for limited data scenarios, particularly addressing ethical concerns related 
to data collection and utilization in the medical field, which can be solved using surgical simulators in the future. 
These simulators could serve as a viable resource for data generation and offer a controlled environment to fine-
tune models, paving the way for advancements that ensure both efficacy and ethical integrity in surgical tool 
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recognition. Convolutional Neural Networks offer a promising solution to enhance surgical instrument count 
accuracy during surgery, addressing a critical aspect of patient safety. 
 

Literature Review 
 
Surgical Tool Recognition and the Utilization of Convolutional Neural Networks 
 
Convolutional Neural Networks (CNNs) are a class of deep learning algorithms designed to automatically and 
adaptively learn hierarchical features from data. Due to their ability to effectively process and analyze visual 
data, CNNs have gained widespread adoption in various fields, including medical imaging and surgical tool 
recognition (Jaafari et al., 2021). CNNs excel in detecting patterns and features within images, making them 
particularly well-suited for tasks such as surgical tool detection and classification. CNNs leverage layers of 
interconnected neurons that apply convolutional and pooling operations to input pictures, extracting relevant 
features at different spatial scales. These features are then passed through additional layers, such as fully con-
nected layers, to generate predictions or classifications. The hierarchical nature of CNNs allows them to learn 
complex representations of surgical instruments, enabling accurate real-time identification and classification in 
real-life surgical settings (Lam et al., 2022). 

Recognition of surgical tools and anatomical features in surgical video images is critical in modern 
surgical settings. Real-time detection and identification of instruments and anatomical structures facilitates sur-
gical navigation, enhances surgical efficiency, and reduces the risk of errors. Bamba et al. (2021) studied auto-
mated recognition of objects and types of forceps in surgical images. Their findings showcased the effectiveness 
of CNNs in accurately identifying different kinds of forceps with high precision and recall rates. Similarly, 
Garcia-Peraza-Herrera et al. (2021) explored image compositing techniques for segmenting surgical tools with-
out manual annotations, demonstrating the potential of CNN-based approaches in overcoming data annotation 
challenges and achieving accurate recognition results. Though neither of these papers specifically addresses the 
issue of surgical instrument counting, they use computer vision to detect surgical tools, showing that machine-
learning models can solve the problem of RSIs. 
 
Current Prevention of Retained Surgical Instruments (RSIs) 
 
Currently, surgical teams, including Certified Surgical Technologists (CSTs) and circulators, regularly count 
sponges, sharps, and instruments throughout surgeries to prevent the retention of foreign objects. These counts 
are performed audibly and documented as accurately as possible to minimize the risk of errors. However, this 
is a manual and traditional method of counting surgical tools, and with machine learning, RSIs can be easily 
avoided. Additionally, facilities may implement policies and procedures to ensure proper handling and disposal 
of instruments and training programs to educate surgical team members on best practices for instrument man-
agement (Association of Surgical Technologists [AST], n.d.). 

Weprin et al. (2021) emphasize the importance of implementing standardized protocols and systematic 
search methods during surgical procedures, which include thorough counting methods, technology such as Ra-
dio-frequency identification (RFID) tagging or magnetic retrieval devices, and systematic search protocols to 
locate lost items, particularly in minimally invasive surgeries with limited visual scope. Weprin et al. also ad-
vocate for computer-aided detection to assist surgical teams in preventing RSIs. Additionally, another recent 
paper was released in 2023 aiming to solve the problem of RSIs using machine learning, proposing hospitals 
integrate video technology with AI-powered cameras and analytic systems. These technologies would monitor 
surgical procedures in real time, track the use and disposal of surgical instruments, and minimize the risk of 
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items being left inside patients. They propose that the open-platform video management software (VMS) ena-
bles object recognition, allowing surgical teams to cross-reference detected items with surgical checklists to 
ensure all instruments are accounted for before incisions are closed. AI-powered cameras integrated with video 
management alarm systems can detect missing or unusual objects, alerting the surgical team to rectify discrep-
ancies immediately. Additionally, predictive analytics would analyze recorded video data to identify patterns 
that may lead to incidents of RSIs. This would enable hospitals to implement proactive measures and training 
programs to prevent such occurrences (Global Edition Artificial Intelligence, 2023). 

Although the above-mentioned methods are believed to reduce RSIs, many surgeons are reluctant to 
allow their procedures to be recorded, refuting both of these sources’ proposals. Surgeons may be wary of legal 
liability for any “accidents.” Still, although it is an influential factor, they mainly abstain from recording sur-
geries due to significant privacy concerns. Recording surgeries violates the Health Insurance Portability and 
Accountability Act (HIPAA), a severe offense. While it is feasible and occasionally conducted for educational 
purposes, it necessitates explicit written consent from the patient. Many other paperwork must be signed before 
even looking at the recording, which is a tedious process to get approved. To address this concern, this paper 
proposes placing a camera over the sterile field tray instead of on top of the patient to address ethical concerns. 
The AI would then compare the list of required materials to the initial number of tools placed on the table and 
then again to the final amount of tools. If tools are missing, the AI will alert the medical staff to take action, 
providing the exact tool they need to look for.  
 
Computer Aided Surgery (CAS) 
 
Computer-Aided Surgery (CAS) represents a transformative approach to surgical practice, leveraging advanced 
technologies to enhance various aspects of surgical procedures. One of the critical areas of exploration within 
CAS is the application of computer vision technologies. These technologies offer a wide range of potential 
applications in surgical practice, including improved surgical education, enhanced navigation during proce-
dures, and increased overall procedural efficiency (Lee et al., 2021). Exploring potential applications of com-
puter vision technologies in computer-aided surgery encompasses various domains within surgical practice. 
One notable application is in surgical education, where computer vision systems can facilitate interactive learn-
ing experiences for medical students and practitioners. By providing real-time visualizations and simulations 
of surgical procedures, these systems offer invaluable training opportunities and enhance the understanding of 
complex surgical techniques (Chiew et al., 2019). Another significant application is in intraoperative naviga-
tion, where computer vision technologies enable surgeons to precisely locate anatomical structures and navigate 
surgical instruments with greater accuracy. By integrating real-time imaging data with preoperative scans and 
intraoperative observations, these systems enhance surgical precision and reduce the risk of procedural errors 
(Chinedu et al., 2022). 
 
Challenges and Limitations 
 
One of the primary challenges in surgical tool recognition is the availability and quality of annotated datasets 
for model training. While large-scale annotated datasets are essential for effectively training deep learning mod-
els, acquiring such datasets in the medical domain poses significant challenges, mainly due to HIPAA (Prellberg 
& Kramer, n.d.). Annotated surgical datasets are often scarce due to privacy concerns, limited access to surgical 
footage, and the expertise required for manual annotation. Moreover, the quality of annotations can vary, lead-
ing to inconsistencies and biases in the training data, which may affect model performance negatively. Address-
ing these challenges necessitates the development of standardized protocols for dataset collection, annotation, 
and curation, ensuring data quality and diversity to enhance model robustness.  
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Class imbalance and variability in real-world surgical scenarios pose additional challenges to surgical 
tool recognition systems. In surgical environments, specific tools may be used more frequently than others, 
leading to imbalanced class distributions in the training data (Garcia-Peraza-Herrera et al., 2021). This imbal-
ance can bias the model towards the dominant classes, reducing performance for minority classes. Furthermore, 
the variability in surgical procedures, lighting conditions, camera perspectives, and patient anatomies introduces 
additional complexity to the recognition task. Models trained on limited or homogeneous datasets may struggle 
to generalize to diverse surgical settings, highlighting the importance of dataset diversity and augmentation 
techniques (Chen et al., 2022). Addressing these complexities requires interdisciplinary collaborations between 
computer scientists, medical professionals, and ethicists to develop robust, interpretable, and clinically relevant 
recognition systems. This is why the author of this paper proposes using surgical simulation, such as the vide-
ogame Surgical Simulator 2, to train and base the image classification model, which will expand the dataset. 
As the project progresses, the model can be applied to physical scenarios, possibly using a Raspberry Pi and a 
camera to detect surgical tools in real-time. 
 

Methods 
 
For this research, an experimental design was employed, utilizing a quantitative approach to investigate the 
impact of model hyperparameters on the performance of various machine learning models. This design involves 
a randomized controlled trial where the independent variable, model hyperparameters, were systematically ma-
nipulated to observe their effects on the dependent variables: model accuracy and precision. These metrics serve 
as crucial benchmarks for evaluating the effectiveness of machine learning models in real-world applications. 
This research utilizes the Kaggle dataset "Labeled Surgical Tools and Images" by Diana Lavado, chosen for its 
suitability in studying the impact of model hyperparameters on machine learning performance, as it has clean 
and simple data.  

Images underwent preprocessing steps such as resizing, normalization, and augmentation to ensure 
uniformity in size, quality, and variability in the dataset—preprocessing aimed to enhance model performance 
and generalization by minimizing overfitting. Dataset generation and augmentation are vital for training neural 
networks in surgical tool recognition. Various methods, like collecting surgical videos and applying augmenta-
tion techniques, enhance dataset diversity and quality (Bamba et al., 2021; Lehr et al., 2023). However, data 
scarcity and the need for expert annotation hinder dataset creation. Generative Adversarial Networks (GANs) 
offer a solution by synthesizing realistic medical images, addressing data scarcity in laparoscopic image analy-
sis (Marzullo et al., 2021; Praveen SR Konduri & Siva, 2024). Diverse synthetic datasets are crucial for im-
proving model robustness and clinical applicability, capturing the variability of surgical procedures and patient 
anatomies (Lee et al., 2021).  

The choice of a CNN architecture was motivated by its effectiveness in image classification tasks. A 
sequential model architecture was employed, consisting of convolutional layers for feature extraction and dense 
layers for classification. The CNN model architecture was configured with appropriate input dimensions, con-
volutional layer parameters (filter size, number of filters), activation functions, and dropout layers to mitigate 
overfitting. The dataset was divided into training and validation sets to evaluate the model performance during 
training. The training set was used to optimize model parameters, while the validation set facilitated monitoring 
of model generalization. The author also manually cleaned the data by selecting only images where each surgi-
cal tool was alone and not with other tools to create a simplistic baseline version as a test bed to conduct the 
study. Hyperparameters such as learning rate, batch size, and number of epochs were tuned to optimize model 
convergence and performance. The model was trained using an iterative process, where training examples were 
presented to the model in batches. During training, the model learned to minimize a predefined loss function 
called categorical cross-entropy by adjusting its parameters using optimization algorithms like Adam. The per-
formance of the trained model was evaluated using standard evaluation metrics such as accuracy, precision, 
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recall, and F1-score on both the training and validation sets. These metrics provided insights into the model’s 
classification capabilities and potential areas for improvement. Line graphs were implemented to illustrate how 
specific model hyperparameters influence accuracy and precision based on the data. They were also crucial in 
assessing model behavior, identifying misclassifications, and diagnosing potential issues such as overfitting or 
underfitting. These visualizations enhance the interpretation of the results and facilitate a deeper understanding 
of the underlying trends and patterns. 

The image classifier was developed and trained using TensorFlow and relevant Python libraries for 
machine learning and image processing. The experiments were performed on computing hardware with suffi-
cient processing power, memory, and GPU acceleration to facilitate efficient model training and evaluation.  
 

Data 
 

 
 
Figure 1. Sample scaled images from the “Labeled Surgical Tools and Images” dataset 
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Figure 2. Sample scaled images from the “Labeled Surgical Tools and Images” dataset 
 
The dataset used is the “Labeled Surgical Tools and Images” by Diana Lavado. The collection consists of 3009 
images and labels that classify the objects as Scalpels, Straight Dissection Clamps, Straight Mayo Scissors, or 
Curved Mayo Scissors, and where each tool resides (on top, not occluded, or at the bottom, occluded). To allow 
the image classifier to recognize individual tools better, the author utilized 450 alone images of the straight 
mayo scissor, 460 alone images of the straight dissection clamp, 550 alone images of the scalpel, and 550 alone 
images of the curved mayo scissor. Sample scaled data are shown in Figures 1 and 2. 
 
Trial 1 
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Figure 3. (a) Loss graph of the first training data of the surgical tools image classifier. (b) Accuracy graph of 
the first training data of the surgical tools image classifier 
 
Loss measures the model's performance, with lower values indicating better performance. Accuracy shows the 
proportion of the training data the model classified correctly. Validation loss means the loss value on a separate 
validation dataset used to evaluate the model’s performance on unseen data. Validation accuracy represents the 
model's accuracy on the validation data, which provides insight into its generalization capabilities. After train-
ing for 20 epochs, the loss was 0.0089, the accuracy was 0.9979, the validation loss was 0.3730, and the vali-
dation accuracy was 0.9375, as shown in Figure 3. 
 
Trial 2 

 
 
Figure 4. (a) Loss graph of the second training data of the surgical tools image classifier. (b) Accuracy graph 
of the second training data of the surgical tools image classifier 
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To ensure that human error is not a factor and to confirm that the model is genuinely not performing as well as 
had hoped, the author then trained the machine learning model a second time, again for 20 epochs. The loss 
was 6.3671e-04, the accuracy was 1.0000, the validation loss was 0.3147, and the validation accuracy was 
0.9688. However, although the accuracy was high, the model failed to generalize well to unseen data. This 
situation, overfitting, occurs when the model learns to memorize the training data rather than capture the un-
derlying patterns. As a result, the model performs poorly on new, unseen data despite its high accuracy on the 
training set. In Figure 4, although the training loss and accuracy decreased and increased, respectively, the 
validation fluctuated, which should not have happened. The author added more layers to the CNN to address 
this issue, implemented data augmentation, and then trained the model again. 
 

 
 
Figure 5. Results of the new image classification model, showing training loss, training accuracy, validation 
loss, and validation accuracy 
 

After training for 20 epochs, the loss was 0.0537, the accuracy was 0.9838, the validation loss was 
0.2554, and the validation accuracy was 0.905. Figure 5 shows how the model's performance improves over 
each training epoch. The training loss decreases, and the accuracy increases over the epochs while ensuring that 
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the validation loss and accuracy also improve. At some points, it remains stable to avoid overfitting. Overall, 
this model improves both training and validation metrics.  
 

 
 
Figure 6. (a) Example of Dropout being implemented on an image of a scalpel. (b) Example of Dropout being 
implemented on an image of a curved mayo scissor 
 

Dropout was utilized to improve the model further to prevent overfitting even further as the model 
learns over multiple epochs, a regularization technique commonly used in deep learning models. Dropout helps 
ensure the model learns to generalize well to unseen data by reducing the risk of memorizing noise or irrelevant 
patterns in the training data. During training, randomly selected neurons are temporarily removed or “dropped 
out” of the network with a certain probability (typically between 0.2 and 0.5). This means that these neurons 
do not contribute to the forward pass of the network and are excluded from the calculation of gradients during 
backpropagation. As a result, the network becomes less sensitive to the specific weights of individual neurons. 
It encourages the network to learn more diverse and independent representations of the input data, leading to 
better generalization performance on unseen data.  
 

Final Model Accuracy 
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Figure 7. Results of the final image classification model, showing training loss, training accuracy, validation 
loss, and validation accuracy 
 
As shown in Figure 7, the loss, both of the training and validation sets, decreases over epochs, indicating that 
the model is improving in its ability to minimize errors. The accuracy (training and validation) increases over 
epochs, suggesting that the model is better at correctly classifying examples. Dropout likely contributed to 
preventing overfitting, as evidenced by the consistent improvement in validation accuracy alongside training 
accuracy. The training time per epoch appears relatively stable despite the addition of dropout, which is ex-
pected as dropout only affects the forward pass during training. 
 

Results 
 
In the initial training phase, the model demonstrated promising results, achieving a final loss of 0.0089 and an 
accuracy of 0.9979 after 20 epochs. However, despite high accuracy on the training set, the model struggled to 
generalize to unseen data, as indicated by a validation loss of 0.3730 and a validation accuracy of 0.9375. To 
verify that the model failed to generalize well to unseen data, the model was trained again. The subsequent 
training phase showed similar results, with the loss remaining low and the accuracy increasing to 100%. How-
ever, despite the high accuracy, the model’s generalization capabilities remained suboptimal, as evidenced by 
a validation loss of 0.3148 and a validation accuracy of 0.9688. This discrepancy suggested overfitting, where 
the model memorized the training data rather than learning underlying patterns.  

Additional layers were added to the CNN to address overfitting, and data augmentation techniques 
were implemented. This technique yielded significant improvements, demonstrating an improved generaliza-
tion, with the validation loss being 0.2554 and a validation accuracy of 0.9055. To improve these statistics 
further, in the final training phase, Dropout regularization was introduced to mitigate overfitting. Dropout ran-
domly excluded neurons during training, encouraging the model to learn more representations of the data. This 
regularization technique proved effective, resulting in a final validation loss of 0.3078 and a validation accuracy 
of 0.8756. 
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Discussion 
 
The integration of CNNs into surgical procedures represents a significant advancement in ensuring patient 
safety by improving surgical instrument count accuracy. The results obtained from the experiments conducted 
in this study demonstrate the efficacy of machine learning algorithms, particularly CNNs, in addressing the 
challenge of RSIs. One of the key findings of this study is the ability of the CNN-based model to achieve high 
accuracy in surgical tool recognition, even when trained on limited data scenarios. Despite the challenges posed 
by data scarcity and the complexity of surgical environments, this model demonstrates robust performance, as 
shown by its high accuracy and precision metrics. Through meticulous preprocessing, careful selection of hy-
perparameters, and the incorporation of advanced techniques such as data augmentation and Dropout regulari-
zation, the author was able to mitigate issues such as overfitting and improve the model’s generalization capa-
bilities. Moreover, the proposed approach addresses the immediate need to improve surgical instrument count 
accuracy and opens up possibilities for future advancements in the field. By utilizing surgical simulators and 
synthetic data generation techniques, the diversity and size of the training datasets can be expanded, further 
enhancing the model’s performance and adaptability to diverse surgical scenarios. Additionally, ongoing tech-
nological advancements, such as integrating AI-powered cameras and real-time monitoring systems into surgi-
cal procedures, offer promising opportunities for enhancing patient safety and reducing the risk of RSIs.  

Looking ahead, the successful implementation of machine learning algorithms in surgical tool recog-
nition has the potential to revolutionize surgical practice. With continued research and development efforts, 
including interdisciplinary collaborations between computer scientists, medical professionals, and ethicists, ex-
isting challenges can be overcome and pave the way for the widespread adoption of CNN-based models in real-
world surgical settings. Furthermore, as computer-aided surgery continues to evolve, there is hope for develop-
ing more sophisticated and intelligent systems that assist surgeons in tool recognition and enhance overall pro-
cedural efficiency and patient outcomes.  
 

Conclusion 
 
The research emphasizes the transformative potential of CNNs in addressing the critical issue of RSIs, an often 
overlooked problem. By synthesizing insights into how Machine Learning could potentially revolutionize RSIs, 
throughout the paper, the author has elucidated the challenges associated with manual counting methods and 
the potential of CNNs in automating surgical tool recognition. Exploring existing prevention strategies, includ-
ing standardized protocols and technological innovations, has provided valuable context for understanding the 
urgency of improving current practices. This paper’s empirical findings have yielded promising results, utilizing 
a CNN-based model trained on a labeled surgical tools dataset. Despite the inherent challenges of data scarcity 
and model generalization, this approach has demonstrated robust performance in accurately identifying and 
classifying surgical instruments. By leveraging advanced techniques such as data augmentation and dropout 
regularization, the paper has mitigated problems such as overfitting and enhanced the model’s adaptability to 
real-world surgical scenarios.  

Because of this study, ways exist to prevent retained surgical tools and enhance patient safety by im-
plementing advanced machine learning algorithms. A model has been developed to characterize these tools, 
and the next step is to combine this model with hardware components to be used in real-time scenarios. In the 
future, there is immense potential for further research and innovation in this field. This study lays the ground-
work for future endeavors to prevent RSIs through the widespread adoption of machine learning technologies. 
Using surgical simulators and synthetic data generation techniques could expand the diversity and scale of 
training datasets, thereby improving the efficacy and reliability of CNN-based models. For example, while 
training, surgeons can focus on more critical aspects of the procedure, knowing that instrument counts are being 
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accurately monitored. Furthermore, the methodologies and insights gained from this research could be poten-
tially applied to other areas within healthcare where accurate monitoring and automation are essential. The 
proposed machine learning model would offer real-time monitoring of surgical instrument counts during pro-
cedures, which provides immediate feedback to the surgical team, allowing them to take corrective actions 
promptly and ensure a safer surgical environment. With this tool's aid, students can perform surgeries more 
accurately going forward. By automating instrument count tracking, surgical teams can streamline procedures, 
potentially reducing overall surgery time and improving efficiency. The seamless integration will potentially 
allow easy adoption without disrupting established workflows, making it a practical solution for surgical set-
tings.  
 

Limitations 
 
The sample size was limited to only four surgical tools, which restricts the generalizability of the findings. The 
small number of tools analyzed means that the results may not represent the broader range of surgical instru-
ments used in practice. 
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