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ABSTRACT 

In the fast-paced landscape of sports, technology, and algorithms are becoming pivotal forces, creating a new 
era of performance and allowing athletes to rise to higher levels. Offenses and defenses are constantly evolving 
and transforming, and with the help of technology, teams are becoming better than ever, and coaching is trickier 
than ever. I present two algorithms to approach coaching sports. In the current football arena, accurately pre-
dicting the next play has been a longstanding challenge. Therefore, I created an optimized Random Forest 
Model (RFM) to anticipate what play a team might run, enabling coaches to strategize and teams to create better 
defenses. I also developed a second network using Deep Double Q-Learning (DDQN) to simulate an offense 
that a coach would call for his players. 

Introduction 

Football is very challenging regarding the physicality the players deal with and the crafting of strategies and 
management of entire teams that coaches contend with. Players are demanded of high physical strength, speed, 
and endurance and are tasked with making split-second decisions that can change the course of their games or 
seasons. On the coaching front, the challenges and complexities are similar to those of a high-stakes chess 
match, where coaches must anticipate moves, decipher the game's flow, and motivate their team. Football 
coaches navigate multiple challenges and manage diverse responsibilities ranging from strategic planning to 
injury reports. In a sport where success depends on many factors, coaches must be provided with the resources 
to deal with their problems properly. Technological advancements in strategic analysis, player performance 
tracking, and injury prevention have significantly enhanced the football landscape. I begin by reviewing current 
tech approaches before proposing a new solution that solves the problem of strategic analysis. 

Current Models 

Current state-of-the-art forecast systems for football are only used in the National Football League (NFL) and 
are not available commercially. This is the partnership between Amazon Web Services (AWS) and Next Gen 
Stats (NGS), which uses machine learning to provide cutting-edge real-time data on players’ location, speed, 
and acceleration [1]. AWS NGS enables models to give statistics on metrics that are otherwise difficult to 
predict. This includes catch and pressure-probability, which enables high-quality, unique statistics to be taken, 
allowing analysts and teams to evaluate their players and performance and extract meaningful insights from the 
game.  
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Figure 1. NGS powered by NFL and AWS 
 

For example, NGS’s Pressure Probability model takes pass-rushing stats beyond the box score. Tradi-
tionally, pass-rush statistics have been limited to manual charting processes that can only be done at the play 
level [2]. However, Pressure Probability uses graph neural networks to treat each player as a node, capture their 
spatial relationships to identify rushers and blockers, and estimate pressure score and movement. Similarly, the 
NFL employs multiple models to take the analysis to the next level. This is one example of a solution in the 
current world.   
 
Uniqueness 
 
Although NGS offers player tracking and real-time statistics, it doesn’t commercially provide the ability to 
predict upcoming plays and supply a team with the opportunity to formulate a strong defense. More importantly, 
NGS provides player tracking solely for NFL players with RFID chips ingrained in their helmets. This allows 
for models to work with very precise, specific data on every player on the field. This, however, isn’t applicable 
in other levels of play. For example, high school athletes cannot wear technology on the field. Therefore, I aim 
to address this problem by developing machine learning models. 
 

Methods 
 
The objective of this research is to develop two models that would predict the next play based on the current 
state of the game. This includes the position of the ball on the field, the time remaining on the game clock, and 
the game's score. These factors prompt teams to approach the game with different tactics and formations, either 
running or throwing the ball. The goal is to consider all the factors and variables and speculate the most likely 
outcome the opposing team will execute. Note this is one of the primary reasons for the rise of machine learning, 
as the human mind simply cannot consider this multitude of variables. For this to work, I gathered a thorough 
data set that included multiple relevant variables, allowing the model to make the accurate predictions required 
for coaches to instruct a team properly.  

To address these challenges, I developed two machine-learning models to help coaches manage their 
teams. My first objective was to create a model to predict, given information about the current state of the game 
(such as the position of the ball on the field, the time remaining on the game clock, and the score), what play 
the opposing team is most likely to execute (such as running vs. passing the ball).  My second objective was to 
develop a reinforcement learning (RL) model that can generate its next play call by itself, taking into account 
the current state of the game (as in the first objective) and historical data on the effectiveness of each play in 
each situation to predict which play type is most likely to help the team gain yards and score points at any given 
time. The goal of this model is to provide the most optimal play to run and other insightful statistics that can 
help advance the offense. 
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 It is important to note that both models rely on the same type of training data: historical play-by-play 
data from past football games indicating, for each play, what the current state of the game was, what play got 
called, and what resulted from the play (e.g., the number of yards and points gained). 
 
Dataset Used for Both Objectives 
 
I selected the NFL Play by Play Data 2009-2018 to train both models [3]. While play-by-play data is available 
via open-source software, it's not freely available for research. Therefore, a group of statistical researchers at 
Carnegie Mellon University developed a tool called nflscrapR, an R-package used to output clean datasets [4]. 
This dataset comprises 255 columns (features) and almost 400,000 rows. Since this dataset contains NFL his-
torical data from 2009 to 2018, it provides a decade of high-quality, reliable data from the most credible source 
of football in the entire world. It can be assured that this data is accurate and the best representation for coaches 
as they will be using robust networks trained on data from the highest level of play. 
 
Exploratory Data Analysis 
 
During the data exploration stage, I used the Pandas Profiling Report to generate insightful visualization and 
statistics of my data. This helped me identify patterns, make critical observations, and understand what data I 
was working with. For example, it can be seen in the heatmap in Fig [5] that the strongest correlation of variables 
is between the yards gained from a play and whether or not it happened to be a first down pass. This is logical, 
as if a down results in a significant gain in yards, it is expected to become a first down.  
 

 
 
Figure 5. Heatmap of specific features 
 
Data Engineering 
 
For both models, I extracted the relevant features contained in the dataset to determine the current state of the 
game. This consisted of: [‘total_away_score’, ‘posteam_score’, ‘defteam_score’, ‘score_differential’, ‘yard-
line_100’, ‘down’, ‘goal_to_go’, ‘ydstogo’, ‘ydsnet’, ‘quarter_seconds_remaining’, ‘half_seconds_remaining’, 
‘game_seconds_remaining’, ‘quarter_end’]. For the next-play-prediction model, I used the play type as the 
target variable, which took on one of 10 play types: pass, run, qb spike, qb kneel, field goal, kickoff, extra-
point, and the end of play. Note that “end of play” includes sacks, scrambles, and stoppage-of-plays like 
timeouts and penalties. For the reinforcement learning play-caller model, I measured the outcome of each play 
with a custom formula taking into account the number of yards and points gained from calling that play:  
f(reward) = yard_reward + score_differential_reward  + first_down_conversion_reward + did_score 
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yard_reward = rewards[‘yards_gained’] 
score_differential_reward =  
{0.1, rewards[‘score_differential’] > 0 
{0, otherwise 
first_down_conv_reward = 7.5 * (rewards[‘first_down_rush’] + rewards[‘first_down_pass’]) 
This formula calculated the reward for every play, which would be later used to train the model.  
 
Next-Play-Prediction Model 
 
To complete the feature extraction for the classification, I needed a robust and scalable model for prediction. 
Since there were no current base models in this field to tweak due to the uniqueness of this project, I decided 
to make my model from scratch and not simply tune another model. This allowed for efficient testing of my 
models run on powerful hardware, allowing me to train these models from scratch and giving me the flexibility 
to adjust the models for their specific tasks. However, because I was creating these new models, I needed to 
fine-tune the parameters and increase the precision of the training. This prompted me to use hyperparameter 
tuning through the GridSearchCV class provided by scikit-learn. Hyperparameter tuning involves finding the 
best parameters for a model to maximize its performance and accuracy. Since I have capable hardware for 
evaluating the model, I used GridSearchCV to find its optimized parameters. 

In my case, I needed a model that could handle a large amount of data being processed and accurately 
forecast the corresponding play type for every play. Because of this, I chose to work with a Random Forest 
Model (RFM). RFMs work by ensembling multiple decision trees and averaging the data to make very low-
variance predictions. RFMs are highly accurate and scalable and reduce overfitting, therefore making them 
perfect for this prediction task [6]. 
 

 
 
Figure 7. RFM architecture 
 

Next, the RFM needed to be trained on the data. As mentioned before, the dataset being worked with 
is very large. Much of the data in the original dataset falls into two categories: unnecessary or unusable. Exam-
ples include statistics that rarely are caught, such as penalties, challenges, or replays, which might occur once 
or twice a game but aren’t important for the prediction of the next play. Even if they can provide insight, the 
rarity of these memorable plays causes them to be unimportant and dropped from the included data. Our dataset 
also contained many other types of less valuable information, such as the players, which was dropped for sim-
plicity. The rest of the data, for example, the play type or the results, were taken in as a string. However, this 
data must be an integer, as that is the only way an RFM can take in the data. For this, the data was OneHotEn-
coded to convert the data into integer format properly. Then, the RFM was created using GridSearchCV to 
optimize its hyperparameters. 
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Finally, the RFM needed to be evaluated on its performance and accuracy to predict the upcoming 
play. Therefore, nested cross-validation was implemented to determine the validity of the results. Nested cross-
validation involves an outer loop that iteratively splits the data into training and validation sets. Then, an inner 
loop further divides the training set into subsets for training and hyperparameter tuning. This method allows the 
assessment of the model and how it generalizes to new, unseen data. 
 
Play-Caller Model 
 
The play-calling objective of this project required a deep understanding of RL techniques. The main compo-
nents of RL include a policy, reward, state, and action. Generally, RL works when an agent acts as the environ-
ment, resulting in a new state for the agent and the environment either rewards or punishes the agent based on 
the policy applied. This can be seen in Fig [8]. 
 

 
 
Figure 8. Policy-based RL 
 

Q-learning is an RL algorithm designed to enable a policy for decision-making in an environment. 
Traditionally, the agent maintains a Q-table, with Q-values representing the reward for taking a specific action. 
The agent then targets to maximize the Q-values. Due to the limitations of a Q-table in environments with 
massive amounts of entries and the inaccurate estimation of the Q-values, neural networks are employed to 
predict them. 

Furthermore, this nonlinear nature of neural networks is crucial for handling complex environmental 
relationships. Therefore, I will use a neural network approach to this task. Because of the number of dimensions 
our data has and the complex factors going into it, I decided to use a Double Deep Q-learning network (DDQN) 
to approximate the Q-function for the reward. DDQNs were introduced by Google DeepMind [9] to address the 
overestimation in a standard DQN, leading to suboptimal policies and slow convergence. DDQNs mitigate this 
issue with two separate neural networks: one for the action selection and one for the action evaluation. These 
are known as the target and online network. The target network periodically copies the weights from the online 
networking, effectively reducing the overestimation. 
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Figure 10. DDQN model architecture 

 
DQNs are specifically shaped through a famous dynamic programming equation called the Bellman 

Equation. When we need to calculate the loss of the model, we need to take the difference between the Q-target 
and the current Q-value. This can be modeled with the equation shown in Fig [11]. 
 

 
 
Figure 11. How to calculate loss 
 

However, the Q-target value is unknown; it needs to be estimated. From here, the Bellman Equation 
comes into play, as the Q-target can be predicted, as shown in Fig [12]. 

 
 
Figure 12. Bellman Equation 

 
The Q-target value is predicted using neural networks. Multiple model architectures were used for the 

target network, with 2 examples below. 
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Figure 13. 2 trial target NN architectures 
 

These neural networks and the DDQN model were trained using Pytorch’s neural network library. The 
data was split into training batches, and using mean squared error loss (MSE) and the Adam optimizer, the 
model was trained by trialing multiple different epochs.  
 

Results 
 
Prediction 
 
Initially, the play-prediction model achieved relatively high accuracy. On seen data, the play prediction had an 
accuracy of ~99.97%. Of course, this was on training data, so while it doesn’t represent the model's factual 
accuracy, this value must be extremely high to show the model is learning from the data. On unseen data, the 
play-prediction model had an accuracy of ~85.21%. This accuracy was found through cross-validation by split-
ting the data into seven folds, iterating through, and creating new training-validation pairs. The average accu-
racy of each fold was taken, giving that result. Note this model was HP-tuned using GridSearchCV.  
 
Play Calling 
 
The output the DDQN provided was a vector of each of the 7 Q-Values of each play type for every single play. 
These Q-values were numerical values that represented the predicted result of each play. To simplify this result, 
the softmax of every vector was taken. This provided a list of percentages, which could be thought of as the 
likeliness of the model to select that play, which means that the highest percent value would be chosen. To find 
the accuracy of the DDQN, this largest value was compared to what the coach called in that situation. The 
DDQN called accurately what the coach called only 4% of the time. After analyzing this result, it was found 
that the field goal column was called over 350k+ thousand times out of the roughly 400k total plays. This means 
that the play-caller model was significantly biased towards field goals, as shown in Fig [14]. 
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Figure 14. Frequency of Model Calls vs. Coach Calls 
 

A random sample example that the model called is depicted below, with the pie chart representing the 
percentages of the model's confidence in each play. 
 

 
 
Figure 15. Pie chart of confidences of sample play 
 

Discussion 
 
Next-Play-Prediction Model 
 
The outcomes from the RFM prediction model show that artificial intelligence can forecast the next play called 
in a football game. This reveals a strong correlation between the state and historical data of a football game 
with the play a coach would call. Practically speaking, it also suggests that models such as the one I have 
developed can help coaches predict which plays will be called by their opponents in a particular situation. This 
can help the coach adjust their strategy for that particular play type, for example, by adopting a defensive strat-
egy better suited to running plays in cases where the model predicts that the opposing team will likely rush. 
While this model demonstrates promising results, these could be improved through more extensive hyperpa-
rameter tuning and training. Nevertheless, a larger dataset would not likely enhance the model as the current 
dataset used contained a surplus of information collected from over a decade of NFL games. As mentioned 
before, the dataset used contained almost 500,000 rows with over 250 features. Although some information was 
dropped due to compatibility, it is worth noting the model had plenty of data to work with. It’s also important 
to recognize that at a certain point, increasing the volume of data may not lead to significant improvements in 
a model's performance and will gradually plateau. 
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 Football coaching is already a progressively challenging process with large rosters, susceptibility to 
injury, and practical strategies from opponents. However, now, with AI, it is possible to simplify this process 
and aid coaches in this challenging field. 
Play-Caller Model 
 
The results of the DDQN reveal that artificial intelligence can simulate an offensive coordinator or a head coach. 
Using a reward-based neural network with reinforcement learning can simulate an offensive coordinator or the 
head coach calling plays for a team. This model, however, needs much tweaking and improvement. We can see 
from the initial results the model is extremely biased toward field goals. This is caused by the vast data imbal-
ance in the NFL on field goals. The extremely high field goal completion rate in the NFL is causing the model 
to believe that any player can hit a field goal from any spot on the field. Because of the more intelligent strategy 
in the NFL, teams don’t have players kicking field goals from far out, which increases the completion rate. 
Furthermore, on top of this, there is a tremendous skill gap between the NFL and a high school or college kicker. 
Therefore, this model needs to be tweaked to fix this. The first step that can be done to do this is to drop many 
of the field goals completed. This will balance out data and force the model to believe that field goals are not 
as likely as it thought. Secondly, the reward function can be tweaked. Every time the player misses a field goal, 
the model will be severely punished. This can also be done when every time a player hits a field goal, the model 
is rewarded much less than previously. These tweaks are minute but can majorly change performance.  

As mentioned before, coaching football is already challenging progress. With AI, it is now possible to 
aid coaches in this challenging field. 
 

Conclusion 
 
It’s now possible for familiar football coaches to coach at a much higher level with the help of artificial intelli-
gence. The results show a correlation between the state and the upcoming play. This justifies future research 
into creating more AI-powered tools to assist the 30K+ football teams, coaches, and millions of players nation-
wide. It should be important to note that this technology will not replace the coaching aspect of football. Instead, 
this should be used as a tool that would assist a coach in a game or the film room. By no means should this 
replace an athletics instructor, as any coach provides valuable insight that no technology can replicate. In the 
circumstances in which the model poorly predicts the opposing team, a coach's intuition is vital to hold the 
model accountable. Not only on the strategic aspect, but coaches are also critical in understanding player inju-
ries, team chemistry, and player skill capacities, which, along with this model, can greatly be taken further than 
simply deepening teams' strategies. The teams who are in need in underprivileged communities who have an 
inherent disadvantage can use this to level the playing field. According to a study done in Texas by Julie Chang, 
aided by USA Today, wealthy schools with low poverty rates have a significantly higher win percentage than 
those schools with higher poverty rates. Reports have shown that these schools lack essential equipment, their 
helmets and pads are decades old, and their players barely eat anything before the games. Only 23% of low-
income schools have won a state football championship in two decades, while the large high schools in Texas 
with the lowest poverty rate have won more than 59% [16]. The disparity in resources affects the outcomes on 
the field. Hence, these underprivileged schools and students must get the help they need. Since there is an 
obvious need for resources for these teams, there is a major opportunity for artificial intelligence to enter the 
sports industry, specifically traditional American football. This has the potential to save students time and 
money, and I look forward to seeing where future research leads. 
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