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ABSTRACT 
 
Fabry Disease is a rare lysosomal disorder that reduces the body's ability to decompose glycosphingolipids that 
naturally accumulate in lysosomes. Specifically, the disease involves mutations in the galactosidase alpha 
(GLA) gene, preventing adequate production of the enzyme α-galactosidase (α-Gal). This enzyme is responsi-
ble for the breakdown of glycosphingolipids, which if not metabolized, can harm the involuntary functions of 
the nervous and cardiovascular systems, eyes, and kidneys. To date, the only known Fabry Disease treatment 
is 1-deoxygalactonojirimycin, otherwise known as oral migalastat. Fabry Disease typically falls under two cat-
egories: Classic and Late-Onset. The former develops during childhood or adolescence, while the latter is not 
evident until early adulthood. Current diagnosis methods are tedious and time-consuming, and the disease may 
spread tremendously before being identified and treated. To address this inefficiency, two machine-learning 
classifiers were developed: one Linear model and one Naive Bayes model. Given a mutated α-GLA nucleotide 
sequence, each model was to determine the mutation's Fabry variant and its amenability to oral migalastat. The 
Linear classifier achieved an accuracy of 59%, while the Naive Bayes classifier reached an accuracy of 96%. 
Thus, a correlation was established between the independent features of a Fabry-affected genotype and the 
patient's phenotype—an observation that will tremendously improve Fabry Disease diagnosis and treatment. 
 

Introduction 
 
Fabry Disease is a rare lysosomal X-linked disorder attributed to a reduction in the body's ability to decompose 
lipids naturally accumulating in lysosomes. Specifically, the disease involves a mutation in the galactosidase α 
(GLA) gene (located on loci Xq 22.1), preventing sufficient production of the enzyme α-galactosidase A (α-
Gal A). This enzyme is responsible for the breakdown of glycosphingolipids, which, when deposited in the 
lysosomes in excessive amounts, can harm the involuntary functions of the nervous and cardiovascular systems, 
eyes, and kidneys (3).  
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Figure 1. Lysosomal operation in unaffected cell. Figure reproduced from Amodio et al (1). 
 

 
 
Figure 2. Lysosomal operation in Fabry-affected cell. Figure reproduced from Amodio et al (1).   
 

Over 1,200 unique nucleotide sequences have been identified as mutations associated with the GLA 
gene (5).  Over 60% of these mutations are missense mutations, manifesting themselves in heterogeneous phe-
notypes from Classic to Late-Onset. The former variant of Fabry Disease develops during childhood or adoles-
cence, while the latter is not evident until early adulthood. 
 
Current Diagnosis 
 
To date, the only known treatment that has been developed to counter Fabry Disease is 1-deoxygalactonojiri-
mycin, AT1001, or oral migalastat, a drug developed by Amicus Therapeutics. Certain patients with α-Gal A 
mutations are amenable to oral migalastat, showing increased catalytic activity of α-Gal A after treatment (4). 
This effect is most commonly found among missense mutations; mutations in the GLA gene that severely affect 
the protein structure (e.g. frameshift mutations, large deletions, and insertions) were not amenable to α-Gal A 
(3, 4). 

Diagnosis of Fabry Disease typically involves an enzyme assay, looking for decreased α-Gal activity 
using the biomarker plasma lyso-Gb3 (7). Furthermore, for pregnant women, an amniocentesis test, which an-
alyzes a fetus's genome for mutations in the α-GLA gene can be used. These methods, however, are tedious 
and time-consuming and yield worse results for women than men, especially when analyzing for left ventricular 
hypertrophy (4); the prognosis may worsen tremendously before being identified and treated. It should be noted 
that it takes 15 years upon the onset of symptoms to diagnose this disease (3). A neural network was thus 
implemented to address the inefficiency of diagnosis. 
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Data Compilation 
 
Genetic Data  
 
Mutations that cause Fabry Disease, although they have comparable effects, appear in the human genome in 
various forms. The majority of these are point substitutions, although many large-scale insertions, deletions, 
and complex mutations also cause Fabry Disease. Upon their discovery, most mutations are uploaded to the 
Human Gene Mutation Database, the Shire Human Genetic Therapies Fabry Outcome Survey registry, and 
other public documentation. 
 
Creating Dataset  
 
The dataset used for this study is based on two data compilations from Amicus Therapeutics, the developers of 
migalastat, one of the only known modern cures to Fabry Disease. The Supplemental Appendix list provides 
labels of numerous genetic mutations, along with their corresponding Fabry Disease types (Classic or Late-
Onset). The Validation of Pharmacogenetics Supplement, similarly, reports several genetic mutations and their 
amenability to migalastat.   

By combining data from these tables, one large dataset of 1,264 mutations was constructed. The data 
is divided into four classes of Fabry mutations: Classic and Not Amenable (Class 1), Classic and Amenable 
(Class 2), Late-Onset and Amenable (Class 3), and Late Onset and Not Amenable (Class 4). Each data point is 
defined by a full GLA gene sequence of 1,290 nucleotides; these mutated sequences are generated by a Python 
script, which replaces the codons specified in the mutation name for each mutation (A31V changes Codon 31 
from Alanine to Valine). To balance the dataset, entries were removed until all classes had an equal number of 
data points (80 per class, 320 total). This data is used to train predictive machine-learning models, seeking to 
classify a genetic mutation by its phenotype and amenability. 
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Figure 3. Python script for mutated sequence generation. 
 

Results 
 
Linear Regression Model  
 
The first model attempting to establish a connection between a Fabry mutation, and its manifestation is a Linear 
Regression model, which assumes a linear relationship between these two variables. To derive features from 
each data point, a preprocessing script is run on the dataset, extracting seven characteristics for each mutation. 
A score is assigned to each nucleotide base (A = 10, G = 20, T = 30, C = 40), allowing these features to be 
analyzed numerically. Features include: 
 

• Type of mutation 
• Average score of nucleotides removed 
• Average score of nucleotides added 
• Location of mutation 
• Number of transitions 
• Number of transversions 
• Length of mutation 

 
The model’s architecture consists of seven input features (one for each characteristic) and 12 hidden 

layers, which start at 110 nodes and narrowing to 5 nodes. Through these hidden layers, the relative significance, 
or weight, of each input feature is determined. The final output layer consists of four nodes, one for each of the 
class predictions. Each layer is accompanied by a rectified linear unit activation function, which alters the output 
to fit the desired range of positive numbers. 
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Figure 4. Linear model architecture. 
 

Using an 80/20 training/testing split, a random set of mutations is chosen to train the model. Employing 
the Adam optimizer, the model minimizes loss (becomes more "fit") by adjusting the relative weight of each 
feature. By iterating through 200 epochs at a learning rate of 0.001, the model approaches a global minima loss 
value, reaching its maximum accuracy. 

The Adam optimizer employs the Stochastic Gradient Descent Algorithm to minimize the loss func-
tion. Consider a function 𝑓𝑓(𝑥𝑥) with 7 unique input features that is said to predict the class of the genetic phe-
notype. 
 

 𝑓𝑓(𝑥𝑥) =  θ0 + θ1𝑥𝑥1  +  θ2𝑥𝑥2  +   ⋯   +  θ7𝑥𝑥7  =   � 𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗

7

𝑗𝑗 = 0

 

 
Let 𝑚𝑚 be the number of training samples. The goal of the Adam optimizer is to minimize the cost 

function 𝑗𝑗 represented as a least-squares difference of the model and the true value. Let 𝜃𝜃 be a parameter such 
that 𝑓𝑓𝜃𝜃(𝑥𝑥) ≈ 𝑦𝑦. 
 

      j(θ) =
1
2
α�(𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖)  −  𝑦𝑦𝑖𝑖)2

m

i = 1

  

 
Minimizing this uses stochastic gradient descent by the following formula. Note that 𝛼𝛼 represents the 

learning rate, which in this model is 0.001. The ≔ represents assignment, rather than equality. 
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θ𝑗𝑗 ≔ θ𝑗𝑗 − α
∂
∂θ𝑗𝑗

𝑗𝑗(θ)    (𝑗𝑗 =  0, 1, … 7) 

 
The partial derivative for each feature is simply 𝑓𝑓(𝑥𝑥), as no other terms in 𝑓𝑓(𝑥𝑥) depend on that specific 

𝜃𝜃𝑗𝑗 and thus the equation can be simplified to: 
 

θ𝑗𝑗 ≔ θ𝑗𝑗 − α ��
1
2

(𝑓𝑓θ(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 
2 ∂
∂θ𝑗𝑗

 ��θ𝑗𝑗

7

𝑗𝑗=0

𝑥𝑥𝑗𝑗�� 

 

θ𝑗𝑗 ≔ θ𝑗𝑗 − α�(𝑓𝑓θ(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)𝑥𝑥𝑗𝑗

𝑚𝑚

𝑖𝑖=1

 

 
The Adam Optimizer builds on Gradient Descent, by helping the model converge to the minima faster 

but works on the same fundamental principles. 
 

 
 
Figure 5. Linear model training and testing. 
 

This algorithm, despite having optimized hyperparameters, has achieved an accuracy of no greater 
than 59%. This suggests that, given a 1,290-nucleotide sequence, the relationship between a genetic mutation 
and its Fabry behavior cannot be determined via a linear model. 
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Figure 6. Loss function of linear model.  
 

 
 
Figure 7. Gradient Descent function of linear model. 
 

 
 
Figure 8. Contour plot of linear model. 
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The visualizations of the linear model further prove that it is unfit to classify nucleotide sequences 

based on their phenotype and amenability to oral migalastat. The loss function of this model (Figure 6) supports 
the low accuracy, as the loss of the function is high with a greater number of training epochs. The 3D represen-
tation of the loss, as shown in the gradient descent (Figure 7), is convoluted and unclear. The lack of a clear 
global minima displays that the linear model is not a good representation of this classifier.  

The contour plot (Figure 8) of the loss function shows that as the loss is decreased, the bias of the 
model is increased, adding to the evidence that a linear model does not fit the relationship between the nucleo-
tide sequence and phenotypic variant and amenability to oral migalastat to a Fabry patient. Thus, a deeper, more 
intricate analysis of the data is necessary to determine the expression of a specific genetic mutation. 
 
Naive Bayes Model  
 
To address this concern, a probabilistic approach was taken to connect Fabry Disease with its phenotypic variant 
and amenability. Under the assumption of the Bayes’ Theorem, the Multinomial Naive Bayes model naively 
assumes that all features in the input data are independent of each other. With this assumption, it calculates the 
posterior probability of a genetic sequence belonging to a certain class given its features and sorts it into a class 
based on the highest posterior probability.  

Let dataset D  =  {(𝑥𝑥1,  𝑦𝑦1),  (𝑥𝑥2,  𝑦𝑦2),  …   ,  (𝑥𝑥𝑛𝑛,  𝑦𝑦𝑛𝑛)}  drawn from a population 𝑃𝑃(𝑦𝑦, 𝑥𝑥) where 𝑦𝑦 is the 
classes to be organized into and 𝑥𝑥 is the test data and we are given 𝑛𝑛 samples are in 𝐃𝐃 for testing. Since we do 
not know the distribution of the training data, we can approximate it with some parameter 𝜃𝜃 that we understand. 
To make a prediction for a specific test point, we can average out every possible model over all parameters. 
 

𝑃𝑃(𝑦𝑦|𝑥𝑥) = � 𝑃𝑃(𝑦𝑦|θ)
θ

0
 𝑃𝑃(𝜃𝜃|𝐃𝐃) 𝑑𝑑𝑑𝑑 

 
𝑃𝑃(𝑦𝑦|𝜃𝜃) measures the probability of a class appearing with a given parameter and 𝑃𝑃(𝜃𝜃|𝐃𝐃) represents 

how applicable the parameter is to the dataset. However, since getting these exact probabilities are nearly im-
possible for each state, we must make the Naive Bayes Assumption, which states that each feature is distributed 
independently among the class (6). 
 

𝑃𝑃(𝑥𝑥|𝑦𝑦) = �𝑃𝑃(𝑥𝑥α|𝑦𝑦)
𝑛𝑛

α=1

 

 
where 𝑥𝑥𝛼𝛼 represents each input feature of the testpoint. Now, using Bayes theorem as well as the Naive 

Bayes' Assumption, the probability of a certain class given a set of 𝑛𝑛 features, or the posterior probability was 
calculated for each class and compared. The model sorted the sample data points into the class with the highest 
posterior probability (6). Calling the model 𝑓𝑓(𝑥𝑥): 
 

𝑃𝑃(𝑦𝑦|𝑥𝑥) =
𝑃𝑃(𝑦𝑦)𝑃𝑃(𝑥𝑥|𝑦𝑦)

𝑃𝑃(𝑥𝑥)  

 
f(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃(𝑦𝑦|𝑥𝑥) 

 
 

𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
𝑃𝑃(𝑦𝑦)𝑃𝑃(𝑥𝑥|𝑦𝑦)

𝑃𝑃(𝑦𝑦)  
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𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃(𝑦𝑦|𝑥𝑥)𝑃𝑃(𝑦𝑦) 
 
 

𝑓𝑓(𝑥𝑥) = argmax�𝑃𝑃(𝑥𝑥α|𝑦𝑦)𝑃𝑃(𝑦𝑦)
𝑛𝑛

α=1

 

 

𝑓𝑓(𝑥𝑥) = argmax�𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃(𝑥𝑥α|𝑦𝑦) 𝑃𝑃(𝑦𝑦)�
𝑛𝑛

α=1

+ 𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃(𝑦𝑦)� 

 
The model began by separating the nucleotide sequence into 6-mers. These small sections of coding 

sequences were analyzed independently to examine subtle features from the larger sequence. These sequences 
were vectorized, allowing the model to extract features from the data. 
 

 
 
Figure 9. Naive Bayes model data vectorization. 
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85% of the total data was then used to train the total data with a learning rate of 0.01, while the other 
15% was used for testing. 
 

 
 
Figure 10. Naive Bayes model training and testing. 
 

The model showed an accuracy of 95.8%, with its confusion matrix displaying an incorrect prediction 
for only 2 of the 48 test points. The model's precision, at 95.8%, measures the proportion of its classifications 
that were accurate. The model's recall, also at 95.8% measures the proportion of true classifications that it was 
able to make. These values, overall, suggest that the Naive Bayes model is able to classify a genetic Fabry 
mutation by its phenotype and amenability with an accuracy of 95.8%. 
 

 
 
Figure 11. Confusion matrix of Naive Bayes model. 
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Reinforcement Analysis 
 
To gain a deeper understanding of the model’s predictive power for individual characteristics, the dataset was 
altered to exclude certain classes, subclasses, and features. For example, by muting all Late-Onset genetic mu-
tations, the model’s ability to discern between amenable and non-amenable Classic mutations was determined. 
Similarly, by muting all amenable mutations, the model’s ability to determine Classic and Late-Onset non-
amenable mutations was determined.  
 
Table 1. Results of Reinforcement Analyses 
 

Alteration Dataset Size Accuracy (%) 
Full Dataset 320 95.8 
Only Classic 160 95.8 
Only Late-Onset 160 100 
Only Amenable 160 91.7 
Only Not Amenable 160 91.7 
Class 0 Muted 240 94.4 
Class 1 Muted 240 100 
Class 2 Muted 240 97.2 
Class 3 Muted 240 88.9 

 
The results from these data-alteration experiments show that, when given a genetic sequence, the 

model’s ability to determine a Fabry variant is comparable to its ability to determine migalastat-amenability. 
The most inaccurate trial is Class 3 (Late-Onset, Non-Amenable) was removed, resulting in an accuracy below 
90%. This suggests that, using 80% of the given data for training, the model is proficient in identifying Class 3 
mutations. The consistency in accuracy among various experiments supports that the model effectively discerns 
between each of the four classes with relatively equal strength. 
 

Conclusion 
 
Overall, the Naive Bayes Classifier was significantly more effective than the Linear Classifier at diagnosing 
the Fabry-affected sequences. Due to its high accuracy, this model provides evidence that the genetic features 
may be analyzed to predict Fabry expression and amenability to oral migalastat in a person.  

By employing such a model, the time needed for the diagnosis of Fabry Disease can be reduced, al-
lowing for more immediate treatments to be administered. Furthermore, medical examiners will be aware of 
the effectiveness of oral migalastat on a particular patient and may administer treatment methods accordingly. 
This will, overall, decrease the mortality rates of the disease, especially in the more heavily affected male pop-
ulation. The success of this model also gives valuable insight into the biological workings of not only Fabry 
Disease, but all genetic disorders; certain mutation features can be linked with certain disease behaviors. A 
deeper understanding of gene expression will allow for more time-efficient diagnosis and treatment, ultimately 
improving the efficiency of healthcare systems. 

To improve the universality of this model, the number of output classifications may be expanded to 
account for amenability to other Fabry treatment drugs. With such developments, the Naive Bayes classifier 
will grow to be an effective diagnosis tool and therapeutic examiner for Fabry Disease, and the knowledge 
gleaned from its development may set the foundation for revolutionary optimizations in the healthcare industry. 
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For future steps, it is crucial that one delve into the confirmational shape of each of these protein 
sequences and analyze how the mutated GLA gene sequence affects the enzyme's ability to fold into its final 
confirmation shape. 
 

 
 
Figure 12. Appropriate confirmational shape of α-Gal A. Figure reproduced from Alphafold (2). 
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