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ABSTRACT 

Capillary tubes are very thin tubes made of a rigid material, such as plastic or glass in which a liquid flows up 
into the tubes against gravity in a process called capillary action. Capillary action occurs due to the liquid's 
surface tension and intermolecular forces without the assistance of external forces or any other medium of en-
ergy. It happens because of the intermolecular forces between the liquid and its surroundings. The diameter of 
the tube plays a crucial role in this process. If the diameter of the tube is sufficiently small, the adhesive forces 
between the liquid and the glass of the tube act to propel the liquid upward. This theoretical framework of my 
research incorporates the forces of gravity, surface tension, and viscosity to find an expression for the time liquid 
takes to reach a specific height in a capillary tube. 

Introduction 

Capillary rise, the phenomenon where a liquid ascends in a narrow tube due to intermolecular forces, has fasci-
nated scientists for centuries. From its early observations by Leonardo da Vinci to its modern-day applications 
in various fields such as microfluidics, biology, and material science, the dynamics of capillary rise continue to 
intrigue researchers worldwide. In this paper, I have worked on the theoretical analysis of the time taken by a 
liquid to ascend in a capillary tube, elucidating the underlying principles governing this process. 
The capillary rise phenomenon arises from the delicate balance between cohesive forces within the liquid and 
adhesive forces between the liquid and the solid surface of the tube. Surface tension, viscosity, tube geometry, 
and gravitational effects all play crucial roles in determining the rate at which the liquid ascends.  

My research begins with a comprehensive examination of the fundamental principles governing capil-
lary rise dynamics. I derive equations describing the change in pressure within the capillary tube, considering 
factors such as surface tension, gravitational forces, and fluid viscosity. Through rigorous mathematical analysis, 
I have developed a theoretical framework to predict the time required for the liquid to ascend a given height in 
the capillary tube. 

Furthermore, I explore the implications of my theoretical findings and their relevance to practical ap-
plications. By validating my theoretical model through comparison with experimental data and established em-
pirical relations, I aim to provide valuable insights into the underlying mechanisms driving capillary rise phe-
nomena. 

In summary, this research paper presents a detailed theoretical investigation into capillary rise dynam-
ics, shedding light on the fundamental principles governing this phenomenon. By combining theoretical analysis 
with practical implications, we offer a comprehensive understanding of capillary rise dynamics, paving the way 
for advancements in various fields reliant on this phenomenon. 
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Literary Framework 
 
Capillary action has been an interesting topic of research in physics for centuries. It began with Leonardo da 
Vinci's observation of water rising in narrow tubes and Galileo Galilei's study of capillary tubes. Later, research-
ers such as Thomas Young and Jurin introduced concepts of angle of contact and capillary height, further con-
tributing to the study of the phenomenon.  

In the modern world, capillary action has practical applications in various fields such as physics, biol-
ogy, chemistry, and medicine. Microfluidics technology has revolutionized the research and study of capillary 
action, enabling precise control of fluid at a molecular level. Recent advancements have led to the development 
of capillary drug delivery in patients, environmental sensors, and other innovative applications. 

Despite centuries of intensive research, there are still many mysteries in this topic, and many questions 
remain unanswered. Theoretical models and studies continue to refine our understanding of fluid dynamics, 
paving the way for new and innovative research and conclusions. 
 

Parameters 
 

1. Surface Tension →S 
2. Coefficient of Viscosity →μ 
3. Pressure →P = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
 

4. The angle of contact → θ 
5. Density of liquid →ρ 
6. Acceleration due to gravity →𝑔𝑔 

7. The radius of the capillary tube→R 
8. Length of capillary tube →L 
9. Time taken by liquid to reach height x →T 
10. Height of liquid in capillary tube →x 
11. Atmospheric Pressure→ Patm 

12. Force due to surface tension→ Product of surface tension with length on which the force acts 

 

Assumptions 
 

1. The volume of liquid in the meniscus, which is the curved surface formed due to the forces of surface 
tension, is negligible in our calculations. This is because the volume of liquid in the meniscus is very 
small compared to the total volume of liquid in the container. The meniscus is formed due to the 
interaction between the liquid and the walls of the capillary tube, which causes the surface of the 
liquid to curve upwards.  

2. I have assumed that the viscous force between the wall of the capillary tube and the liquid is zero, 
meaning that there is no resistance to the flow of the liquid along the walls of the tube. (The thickness 
of the boundary layer is to be infinitesimally small) 

3. To simplify calculations, I have assumed that the length of the capillary tube inside the liquid con-
tainer is minimal. This is required because the length of the capillary tube inside the container will 
have a negligible effect on the overall liquid flow.  

4. I have only considered a laminar flow of liquid (the liquid flows smoothly and predictably without 
any turbulence or chaotic movement.), characterized by a Reynolds Number of less than 1000. The 
Reynolds Number is a dimensionless quantity that describes the ratio of inertial forces to viscous 
forces in a fluid. A Reynolds Number of less than 1000 indicates that the flow of liquid is smooth and 
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predictable, with no turbulence or chaotic movement. This means that the liquid flows in parallel 
layers, and there is no mixing or swirling of the liquid (Newtonian Fluid).  

5. I assume axisymmetric flow within the capillary tube, where the velocity and other flow characteristics 
are independent of the azimuthal angle around the tube's central axis. This assumption simplifies the 
mathematical treatment by reducing the problem to one dimension, assuming that variations in flow 
properties occur only along the radial direction.  

6. I assume isothermal conditions within the capillary tube, meaning that the temperature remains con-
stant throughout the fluid. This simplifies the analysis by neglecting heat transfer effects on the liquid 
flow. 

7. I assume axisymmetric flow within the capillary tube, where the velocity and other flow characteristics 
are independent of the azimuthal angle around the tube's central axis. This causes the problem to 
remain up to one dimension only, (assuming that variations in flow properties occur only along the 
radial direction) 

 
When we conduct an analysis, we often rely on assumptions to simplify the process and make it more manage-
able. However, we must also consider the practicality of these assumptions in real life scenarios and their rele-
vance to the specific situation under investigation. Therefore, it is crucial to validate the results with experi-
mental findings to ensure that they accurately reflect the situation at hand. 
 

The Proof 
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HB 
 
Figure1. Condition of liquid in the capillary tube at time T 
 
Let at any time T, the liquid reach a height x in the capillary tube. 

Let the pressure at the top of the surface of the liquid be PT and that at the bottom of the capillary tube 
be PB. Considering the bottom of the capillary tube as a reference: 
 

PT=Patm−
2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝜋𝜋𝑅𝑅2
 

PT=Patm−
2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑅𝑅 ….(1.1) 
 

(Only the cosine component of the force of surface tension acts in the perpendicular direction. There-
fore, we can write pressure due to surface tension as 2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑅𝑅
) 

 
PB=Patm…..(1.2). 

 
Therefore, the change in pressure (ΔP) can be written as:  

 
ΔP=PB-PT 

ΔP= (Patm+𝜌𝜌𝜌𝜌HB) -(Patm−
2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑅𝑅
+𝜌𝜌𝜌𝜌HT) 

HT 

𝑆𝑆2𝜋𝜋𝜋𝜋 

2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
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ΔP= 2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑅𝑅
+  𝜌𝜌𝜌𝜌(HB-HT) 

 
HB and HT are the liquid column heights at the bottom and top, respectively. 

 
Considering HB=0 and HT=x (Taking the bottom of the capillary tube as a reference), we get: 

 
 
                                                             ΔP= 2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑅𝑅
−  𝜌𝜌𝜌𝜌x                                  ……(1.3) 

 
 

Now, using Poiseuille’s equation: 
ΔP=8𝜇𝜇𝜇𝜇𝜇𝜇

𝜋𝜋𝑅𝑅4
                               

 
Here, L=x for the given condition, and Q=Volume flow rate= Area x Velocity. Now, the velocity at this 

instant can be written as the derivative of the change in height concerning time (t). 
 

ΔP=
8𝜇𝜇𝜇𝜇𝜇𝜇𝑅𝑅2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜋𝜋𝑅𝑅4
 

 
Simplifying and using equation 1.3, we get: 

 
   

 2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅 −  𝜌𝜌𝜌𝜌𝜌𝜌
𝑥𝑥

=
8𝜇𝜇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑅𝑅2

 

 
 

2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑅𝑅𝑅𝑅

− 𝜌𝜌𝜌𝜌 =
8𝜇𝜇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑅𝑅2

                           …..(1.4) 

 
Further simplifying: 

2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
8𝜇𝜇𝜇𝜇

−
𝜌𝜌𝜌𝜌𝑅𝑅2

8𝜇𝜇
=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

 
Let2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

8𝜇𝜇
=a and 𝜌𝜌𝜌𝜌𝑅𝑅

2

8𝜇𝜇
= 𝑏𝑏 

𝑎𝑎
𝑥𝑥
− 𝑏𝑏 =

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

 

𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑
𝑎𝑎
𝑥𝑥 − 𝑏𝑏

 

Integrating both sides, we get: 
 

∫ 𝑑𝑑𝑑𝑑 = ∫ 𝑥𝑥.𝑑𝑑𝑑𝑑
𝑎𝑎−𝑏𝑏𝑏𝑏

𝑥𝑥
0

𝑇𝑇
0 …….(1.5) 

 
Let a-bx=t 
Taking derivative both sides we get: 
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−𝑑𝑑𝑑𝑑
𝑏𝑏

= 𝑑𝑑𝑑𝑑 

Also,     

𝑥𝑥 =
𝑎𝑎 − 𝑡𝑡
𝑏𝑏

 

 
Putting these two equations in equation 1.5: 

 

𝑇𝑇 = �
𝑎𝑎 − 𝑡𝑡
𝑏𝑏𝑏𝑏

𝑑𝑑𝑑𝑑 

𝑇𝑇 =
1
𝑏𝑏2

[𝑡𝑡 − 𝑎𝑎 ln |𝑡𝑡|] 

 
Putting in the limits of the integral from 0 to x and the values of a and b: 

 

𝑇𝑇 = �
−1
𝑏𝑏2

(𝑎𝑎 ln(|𝑎𝑎 − 𝑏𝑏𝑏𝑏|) + 𝑏𝑏𝑏𝑏 − 𝑎𝑎 ln𝑎𝑎)�
0

𝑥𝑥

 

 

𝑇𝑇 =
−64𝜇𝜇2

𝜌𝜌2𝑔𝑔2𝑅𝑅4
�

2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
8𝜇𝜇

�ln  �
2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝜌𝜌𝜌𝜌𝑅𝑅2𝑥𝑥

8𝜇𝜇
�� + 

𝜌𝜌𝜌𝜌𝑅𝑅2𝑥𝑥
8𝜇𝜇

−
2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

8𝜇𝜇
�ln

2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
8𝜇𝜇

�� 

 
 

Validation and Verification 
 
To verify the given equation, we need to substitute certain values for the variables and check if the equation 
holds.  

When we substitute x=0, we get T=0. This means that when the value of x is zero, the value of T is 
also zero. This is an expected result and satisfies one of our boundary conditions, confirming that the model 
behaves correctly at the initial point where the liquid begins to rise in the capillary tube. 

Next, we substitute Hmax=
2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝜌𝜌𝜌𝜌𝜌𝜌

 (Appendix) in the equation. When we do so, we get T→∞. This shows 

that it takes infinitely long time for the liquid to reach maximum height in the capillary tube. 
By demonstrating that the equation satisfies the conditions of zero time at the capillary base and infinite 

time at maximum height, I validate that my equation accurately models the capillary rise phenomenon. This 
verification process supports the reliability and robustness of my theoretical model, ensuring that it correctly 
describes the behavior of liquid rise in a capillary tube under the specified conditions. 
 

Experimental Graph 
 
When we put in the values of the parameters for water, those are: 

g=9.8 meters per second square 

ρ=103 kilograms per meter cube 

μ=10-3 Pascal-second 
R=10-3 meter or 1 millimetres 
S=72.8 millinewtons 

θ =
12𝜋𝜋
180
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in the function of time, we obtain the following graph for the function: 
 

 
 
Figure.2. Capillary rise time graph for water 
 

The X-axis represents the Height reached in millimeters (10-3 meters) 
The Y-axis represents time taken in μ-seconds (10-6 seconds) 
The graph provides a visual representation of the height of the capillary tube's water column as a time 

function. Initially, the height increases rapidly, but as time progresses, the rate of rise slows down, approaching 
a horizontal asymptote. This asymptotic behavior indicates that the liquid takes an infinitely long time to reach 
its theoretical maximum height in the capillary tube. 

This behavior is consistent with the theoretical predictions of the capillary rise phenomenon, where 
the driving force (surface tension) and the resistive forces (gravitational and viscous forces) reach a dynamic 
equilibrium.  

The following graph represents experimental data from previous research. 
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Figure 3. Capillary rise time graph from previous experimental data. (Source: 
https://www.researchgate.net/figure/Measured-and-calculated-values-of-capillary-rise-over-time-Examples-
of-capillary-rise_fig4_301714732) 
 

When comparing Fig.2 (my graph) with Fig.3 (previous experimental data), several key observations 
can be made: 

Similar Asymptotic Behavior: Both graphs exhibit a similar asymptotic trend, indicating that the height 
of the liquid column increases rapidly initially and then gradually slows down, approaching a maximum height 
asymptotically. 

Rate of Rise: The rate at which the height increases over time is comparable in both graphs, further 
validating our model. 

Consistency in Parameters: The use of similar physical parameters (density, viscosity, surface tension, 
etc.) in our model and the previous experimental setup reinforces the reliability of our results. 
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Result 
 
The final result found using analysis of my equation and its graph is that it takes infinite time for the liquid to 
rise in a capillary tube and depends upon various parameters such as surface tension, tube geometry, and gravity. 
The ascent time can be controlled in practical applications by manipulating these parameters. Additionally, the 
limitations of this theoretical model can be potential avenues for future research. 
 

Conclusion 
 
In conclusion, my research theoretically analyzes capillary rise dynamics in a thin capillary tube. By developing 
a theoretical model to predict the time liquid takes to rise in a capillary tube, I contribute to the fundamental 
understanding of this phenomenon. The validation of this model with experiments enhances its accuracy. My 
research offers insight into the design and optimization of capillaries in scientific and technological applications. 
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Appendix 
 
To verify my final equation, I have taken Hmax=

2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝜌𝜌𝜌𝜌𝜌𝜌

. 

The proof of this can be done this way: 
When the liquid reaches its maximum height, ΔP will be equal to zero (Because velocity will be zero). 
Therefore, 

 
2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑅𝑅

= 𝜌𝜌𝜌𝜌𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 

 

𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 =
2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝜌𝜌𝜌𝜌𝜌𝜌
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