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ABSTRACT 
 
In outer space, a spaceship experiences almost no external forces that can slow down its movement. Under these 
circumstances, crashing into other space objects becomes particularly threatening, as the spaceship must move, turn 
its thrusters, and accelerate in the opposite direction to avoid collision. However, the possible directions of the thrusters 
that achieve the goal of avoiding an object vary greatly. The goal of this research is to create a mathematical model 
using knowledge of physics and mathematics to find the optimal angle to accelerate at with a given initial velocity, 
distance to the object, and maximum acceleration, which will assist spaceships in steering away from objects in the 
safest way possible. Specifically, this means the angle at which the minimum distance between the spaceship and the 
object’s center is the furthest out of all angles. The mathematical model in the research creates two equations that 
provide the optimal angle for two separate situations between the given variables and confirm that velocity, distance, 
and acceleration all play a role in the final optimal angle. The model also provides two equations for the minimum 
distance that the spaceship will be from the object's center if it accelerates at that angle. This knowledge and model 
can be used in spaceships to not only avoid collisions against other objects in space but also to leave a restricted zone 
or a harmful area in space in the safest way possible, potentially saving the lives of passengers from fatal crashes and 
other threats.  
 
Objective: 
 
The overall objective of this research is to discover how the initial velocity of the spaceship, the distance to the center 
of the object, and the maximum acceleration possible by the spaceship affect the optimal acceleration angle of the 
spaceship. The investigation will explore whether all three factors play a role in the final optimal angle and, if so, 
determine in what ways each factor influence the optimal avert angle. The project aims to design a mathematical 
model that can calculate this angle in any situation where the three independent variables are positive real numbers. 
Furthermore, the project seeks to establish additional equations to determine the minimum distance that the spaceship 
will be from the center of the object, on the trajectory of accelerating away from the object at the optimal avert angle.  
 
Introduction: 
 
Humans have always looked up at the night sky and imagined the endless possibilities in space. The age of space 
exploration started during the mid-twentieth century, when rapidly developing technologies brought the first artificial 
satellite and the first moon landing. Since then, humans have launched thousands of satellites into space to orbit Earth 
and dozens more to the Moon, Mars, Venus, and deep space. 
            Space exploration improves the lives of all people by advancing new technologies, expanding the economy, 
and creating new career paths. The development and commercial use of satellites have brought the world together 
through the internet and allowed every country to reach unprecedented levels of convenience and efficiency. The 
venture into unknown lands also provides unlimited inspiration and ambition for a new generation of scientists and 
engineers. In the world of science, space exploration aims to answer questions as practical as weather formation and 
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as abstract as the origin of the universe. Finally, development in space exploration requires the collaborative effort of 
all of mankind, bringing countries across borders in harmony and collaboration to all work together and venture into 
the vast unknown. 
            When exploring outer space, however, spaceships must survive the constant risk of crashing into other objects. 
Down on the ground, transportation vehicles enjoy the luxury of having both a road and a tire with an immense amount 
of friction. Cars, bicycles, and other land transportation simply need to hold onto their brakes, and the force of friction 
can slow them to a halt almost instantly. In outer space, however, with almost no external forces other than low 
amounts of gravitational fields, slowing down and avoiding crashes become far more difficult. As Newton’s first law 
states, an object in motion will stay in motion until another force acts on it. Therefore, even if the spaceship has no 
engines activated, it can nevertheless fly at objects at fatal speeds. This is especially true when moving in an orbit 
around a moon, planet, or star, where spaceships must orbit at a certain speed to counteract the gravitational force with 
centrifugal force. To avoid a collision, a spaceship must launch its thrusters in a different direction from the object 
and change its path to deviate further and further away from the object. 

Currently, the main sources of collision threats for satellites include space debris and other satellites. As 
humans launch more and more satellites into space, the materials that are ejected in the launching process or obsolete 
satellites often remain orbiting around Earth. This poses a significant threat to future satellites and restricts their or-
biting paths. For instance, in 2019, a satellite from the European Space Agency had to perform a collision avoidance 
maneuver to avoid crashing into an obsolete Starlink satellite by changing its orbit with thrusters. As space technology 
develops and commercializes, however, sources of collision threats broaden greatly, such as flying into planets and 
moons, into space stations, into other spaceships, and much more. 

This research project focuses on situations where the spaceship is flying towards a large object, such as a 
space station, where it must exert all its possible energy to avoid a crash. Since the outcome of the avoidance maneuver 
determines the survival of the entire spaceship and all passengers inside, the solution proposed to avoid crashes focuses 
solely on the effectiveness of the collision avoidance maneuver. Consequently, the model does not consider the effi-
cient use of fuel, like maneuvers used to avoid small space debris. Since the maximum acceleration of the spaceship, 
initial velocity, and distance to the object cannot be decided by the spaceship during the crash, the mathematical model 
created in this project proposes the best angle for the spaceship to turn towards to avoid crashing onto the object, 
which is the one variable spaceships can control with rotation thrusters. 

 

Hypothesis: 
 
The main hypothesis is that the optimal angle of acceleration is not a fixed value that applies to all situations, and that 
the distance to the object, the initial velocity of the spaceship, and the maximum acceleration of the spaceship will all 
impact the final optimal angle. This hypothesis can be justified by using two extreme situations: If the spaceship is 
moving at a slow initial speed relative to the maximum acceleration of the thrusters, the optimal angle would be 
directly opposite to velocity, where the spaceship will quickly slow down from the much stronger acceleration. On 
the contrary, if the spaceship was moving at extremely high speeds compared to acceleration, it would crash into the 
object if it was accelerating in the same direction as in the example before. Alternatively, by positioning the thrusters 
closer toward perpendicular to the velocity direction, the spaceship can gain some distance before approaching the 
object by deviating away from its own path towards the object. 

Another hypothesis for this mathematical model is that above a certain situation between acceleration, ve-
locity, and distance, and to the extreme of that situation, the optimal avert angle would be fixed to 0˚, and another 
situation would fix the angle to 90˚. This can be shown by the extreme examples provided in the main hypothesis as 
well, where the two situations led to the optimal angle being close to 0˚ and 90˚. Therefore, if the relationship between 
the three independent variables was compared to a number line, then the hypothesis is that in the model, the optimal 
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avert angle moves between 0˚ and 90˚ on a certain segment of the line, while from the two ends of the segment 
approaching positive and negative infinity, the angle is fixed at 0˚ and 90˚. 

 

Equations 
 
Below are some mathematical equations used in the model that help calculate and prove the optimal angle throughout 
the model. 
 
Equation 1: Distance Formula  
The distance formula states that on a two-dimensional plane, the distance between two points (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2, 𝑦𝑦2), 
using the Pythagorean theorem, can be expressed as: 

�(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2 
 
Equation 2: Physics equation of motion 
The physics formula for the displacement of an object over time (t) with a given initial distance (d), initial velocity (v) 
of the object, and acceleration (a) of the object can be written as: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑 + 𝑣𝑣𝑣𝑣 + 0.5𝑎𝑎𝑡𝑡2 
 
Equation 3: Vector Resolution Equation 
The vector resolution equation states that a vector with a magnitude of ‖𝑣𝑣‖ and an angle of 𝜃𝜃 can be written as the 
sum of the two following vectors in component form: 

 〈‖𝑣𝑣‖ cos 𝜃𝜃 , 0〉 +   〈0, ‖𝑣𝑣‖ sin𝜃𝜃〉 
 
Equation 4: Pythagorean identity 
Derived from the Pythagorean theorem, one identity from trigonometric functions frequently used in the model is that 
for any angle 𝜃𝜃, the following equation is true: 

(cos 𝜃𝜃)2 + (sin𝜃𝜃)2 = 1 
 
Equation 5-10: Differentiation Rules 
The mathematical model also uses a variety of basic derivative rules, including: 

• Constant rule: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑐𝑐 = 0 

• Sum rule: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

( 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥)) = 𝑓𝑓′(𝑥𝑥) + 𝑔𝑔′(𝑥𝑥) 

• Product rule: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

( 𝑓𝑓(𝑥𝑥) × 𝑔𝑔(𝑥𝑥)) = 𝑓𝑓′(𝑥𝑥) × 𝑔𝑔(𝑥𝑥) + 𝑔𝑔′(𝑥𝑥) × 𝑓𝑓(𝑥𝑥) 

• Power rule: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑥𝑥𝑎𝑎) = (𝑎𝑎𝑥𝑥𝑎𝑎−1) 
• Chain rule: 𝑓𝑓(𝑥𝑥) = 𝑔𝑔�ℎ(𝑥𝑥)�, 𝑓𝑓′(𝑥𝑥) = 𝑔𝑔′(ℎ(𝑥𝑥)) × ℎ′(𝑥𝑥) 
• Trigonometric derivatives rule: 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
cos(𝑥𝑥) = − sin(𝑥𝑥) , 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
sin(𝑥𝑥) = cos (𝑥𝑥) 

 
The Mathematical Model 
 
Variables Used 
 

• Initial distance = d 
• Initial velocity = v  
• Maximum acceleration = a 
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• Angle of acceleration = A (0˚ - 90˚) 
• Time = t 

The domain for all the variables other than A is all positive real numbers.  
 

 
Figure 1 – Mathematical Model Diagram. This diagram depicts the proposed situation in this investigation of a space-
ship about to crash onto an object, with all the variables used in the situation labeled.  
 

 
Figure 2 – Spaceship Force Analysis. Vector diagram separating the spaceship’s acceleration vector into horizontal 
and vertical vectors with the vector resolution equation.   
 
 
Solving for Optimal Avert Angle 
 
Function of horizontal (X) and vertical (Y) distances to the object’s center over time (t) 
 
𝑋𝑋 = �(0.5𝑡𝑡2𝑎𝑎 cos(𝐴𝐴) − 𝑡𝑡𝑡𝑡 + 𝑑𝑑)2    𝑌𝑌 = 0.5𝑡𝑡2𝑎𝑎sin (𝐴𝐴)  
 
Function of distance (y) to the object’s center over time (x) using the Pythagorean theorem 

𝑦𝑦 = �(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2 
 
The optimal avert angle would be where the minimum distance to the collision object is the furthest out of all possible 
angles from 0˚ to 90˚, to stay as far away from the object as possible. To start in solving this, the minimum of the 
function must first be solved. To do this, the distance function can be differentiated and find the x-value where the 
derivative equals 0.  
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Differentiating the Distance Function 
 

𝑦𝑦 = �(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2 
 

𝑦𝑦′ =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 ((0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2)

2�(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2
 

 

𝑦𝑦′ =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 (0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2

2�(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2
 

 

𝑦𝑦′ =
2(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑) + 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2

2�(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2
 

 

𝑦𝑦′ =
2(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)(𝑥𝑥𝑥𝑥 cos(𝐴𝐴) − 𝑣𝑣) + 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2

2�(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2
 

 

𝑦𝑦′ =
2(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)(𝑥𝑥𝑥𝑥 cos(𝐴𝐴) − 𝑣𝑣) + 2(0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴)) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))

2�(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2
 

 

𝑦𝑦′ =
2(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)(𝑥𝑥𝑥𝑥 cos(𝐴𝐴) − 𝑣𝑣) + 2(0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴)) (𝑥𝑥𝑥𝑥 sin(𝐴𝐴))

2�(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2
 

 

𝑦𝑦′ =
2(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)(𝑥𝑥𝑥𝑥 cos(𝐴𝐴) − 𝑣𝑣) + (𝑥𝑥2𝑎𝑎 sin(𝐴𝐴)) (𝑥𝑥𝑥𝑥 sin(𝐴𝐴))

2�(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2
 

 

𝑦𝑦′ =
2(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)(𝑥𝑥𝑥𝑥 cos(𝐴𝐴) − 𝑣𝑣) + (𝑥𝑥3 𝑎𝑎2 sin2(𝐴𝐴))

2�(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2
 

 
This is the derivative of the distance function. When the derivative of the function passes through the x axis, or when 
the y-value is 0, the original function is at its minimum. 
 
Finding the X-axis Intersection of the Function 
 

0 =
2(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)(𝑥𝑥𝑥𝑥 cos(𝐴𝐴) − 𝑣𝑣) + (𝑥𝑥3 𝑎𝑎2 sin2(𝐴𝐴))

2�(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2
 

 
0 = 2(0.5𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)(𝑥𝑥𝑥𝑥 cos(𝐴𝐴) − 𝑣𝑣) + 𝑥𝑥3 𝑎𝑎2 sin2(𝐴𝐴)) 

 
0 = (𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 2𝑥𝑥𝑥𝑥 + 2𝑑𝑑)(𝑥𝑥𝑥𝑥 cos(𝐴𝐴) − 𝑣𝑣) + 𝑥𝑥3 𝑎𝑎2 sin2(𝐴𝐴) 

 
0 = 𝑥𝑥𝑥𝑥 cos(𝐴𝐴) (𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 2𝑥𝑥𝑥𝑥 + 2𝑑𝑑) − 𝑣𝑣(𝑥𝑥2𝑎𝑎 cos(𝐴𝐴) − 2𝑥𝑥𝑥𝑥 + 2𝑑𝑑) + 𝑥𝑥3 𝑎𝑎2 sin2(𝐴𝐴) 

 
0 = 𝑥𝑥3𝑎𝑎2 cos2(𝐴𝐴) − 2𝑥𝑥2𝑎𝑎𝑎𝑎 cos(𝐴𝐴) + 2𝑥𝑥𝑥𝑥𝑥𝑥 cos(𝐴𝐴) − 𝑥𝑥2𝑎𝑎𝑎𝑎 cos(𝐴𝐴) + 2𝑥𝑥𝑣𝑣2 − 2𝑑𝑑𝑑𝑑 + 𝑥𝑥3 𝑎𝑎2 sin2(𝐴𝐴) 
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0 = 𝑥𝑥3(𝑎𝑎2 cos2(𝐴𝐴) + 𝑎𝑎2 sin2(𝐴𝐴)) − 𝑥𝑥2(2𝑎𝑎𝑎𝑎 cos(𝐴𝐴) + 𝑎𝑎𝑎𝑎 cos(𝐴𝐴)) + 𝑥𝑥(2𝑎𝑎𝑎𝑎 cos(𝐴𝐴) + 2𝑣𝑣2) − 2𝑑𝑑𝑑𝑑 
 

0 = 𝑥𝑥3(𝑎𝑎2 (cos2(𝐴𝐴) +  sin2(𝐴𝐴))) − 𝑥𝑥2(3𝑎𝑎𝑎𝑎 cos(𝐴𝐴)) + 𝑥𝑥(2𝑎𝑎𝑎𝑎 cos(𝐴𝐴) + 2𝑣𝑣2) − 2𝑑𝑑𝑑𝑑 
 

0 = 𝑥𝑥3(𝑎𝑎2) − 𝑥𝑥2(3𝑎𝑎𝑎𝑎 cos(𝐴𝐴)) + 𝑥𝑥(2𝑎𝑎𝑎𝑎 cos(𝐴𝐴) + 2𝑣𝑣2) − 2𝑑𝑑𝑑𝑑 
 
Above is a cubic equation that finds the minimum point of the distance function.  
 

𝑦𝑦 = �(0.5𝑥𝑥2𝑎𝑎  cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎  sin(𝐴𝐴))2 
 
We now return to the distance function. Here, when the function is solved for when 𝑥𝑥 = 𝑑𝑑

𝑣𝑣
, all the trigonometric func-

tions are cancelled out.  
 
Solving for the Distance Function for 𝑥𝑥 = 𝑑𝑑

𝑣𝑣
 

 
𝑦𝑦 = �(0.5𝑥𝑥2𝑎𝑎  cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2 

 

𝑦𝑦 = �(0.5( 
𝑑𝑑2

𝑣𝑣2
 )𝑎𝑎 cos(𝐴𝐴) − 𝑣𝑣( 

𝑑𝑑
𝑣𝑣

 ) + 𝑑𝑑)2 + (0.5( 
𝑑𝑑2

𝑣𝑣2
 )𝑎𝑎 sin(𝐴𝐴))2 

 

𝑦𝑦 = �(0.5
𝑑𝑑2

𝑣𝑣2
 𝑎𝑎 cos(𝐴𝐴) − 𝑑𝑑 + 𝑑𝑑)2 + (0.5

𝑑𝑑2

𝑣𝑣2
𝑎𝑎 sin(𝐴𝐴))2 

 

𝑦𝑦 = �(0.5
𝑑𝑑2

𝑣𝑣2
 𝑎𝑎 cos(𝐴𝐴))2 + (0.5

𝑑𝑑2

𝑣𝑣2
𝑎𝑎 sin(𝐴𝐴))2 

 

𝑦𝑦 = �(
𝑎𝑎𝑎𝑎2 cos(𝐴𝐴)

2𝑣𝑣2
 )2 + (

𝑎𝑎𝑎𝑎2 sin(𝐴𝐴)
2𝑣𝑣2

 )2 

 

𝑦𝑦 = �𝑎𝑎
2𝑑𝑑4 cos2(𝐴𝐴)

4𝑣𝑣4
+
𝑎𝑎2𝑑𝑑4 sin2(𝐴𝐴)

4𝑣𝑣4
 

 

𝑦𝑦 = �𝑎𝑎
2𝑑𝑑4

4𝑣𝑣4
(cos2(𝐴𝐴) + sin2(𝐴𝐴)) 

 

𝑦𝑦 = �𝑎𝑎
2𝑑𝑑4

4𝑣𝑣4
 

 

𝑦𝑦 =
𝑎𝑎𝑑𝑑2

2𝑣𝑣2
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When 𝑥𝑥 = 𝑑𝑑
𝑣𝑣
, the angle terms in the function are cancelled out completely. This means that at this x-value, the angle 

of acceleration does not affect the distance, and regardless of the angle, the distance at this point will always be 𝑎𝑎𝑎𝑎
2

2𝑣𝑣2
 

 Since this point remains constant and the distance function must pass through it, the optimal angle of accel-
eration would be when this point, 𝑥𝑥 = 𝑑𝑑

𝑣𝑣
, is the minimum point of the function. Therefore, the cubic derivative equation 

previously solved can be used to calculate what angle A will 𝑥𝑥 = 𝑑𝑑
𝑣𝑣
 be equal to 0, or the minimum of the original 

function.  
 
Solving for the Angle A where (Derivative of the Point 𝑥𝑥 = 𝑑𝑑

𝑣𝑣
 ) = 0 

 
𝑥𝑥3(𝑎𝑎2) − 𝑥𝑥2(3𝑎𝑎𝑎𝑎 cos(𝐴𝐴)) + 𝑥𝑥(2𝑣𝑣2 + 2𝑎𝑎𝑎𝑎 cos(𝐴𝐴)) − 2𝑑𝑑𝑑𝑑 = 0 

 
𝑑𝑑3

𝑣𝑣3
(𝑎𝑎2) −

𝑑𝑑2

𝑣𝑣2
(3𝑎𝑎𝑎𝑎 cos(𝐴𝐴)) +

𝑑𝑑
𝑣𝑣

(2𝑣𝑣2 + 2𝑎𝑎𝑎𝑎 cos(𝐴𝐴)) − 2𝑑𝑑𝑑𝑑 = 0 

 
𝑎𝑎2𝑑𝑑3

𝑣𝑣3
−

3𝑎𝑎𝑑𝑑2𝑣𝑣 cos(𝐴𝐴)
𝑣𝑣2

+
2𝑑𝑑𝑑𝑑2 + 2𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)

𝑣𝑣
− 2𝑑𝑑𝑑𝑑 = 0 

 
𝑎𝑎2𝑑𝑑3

𝑣𝑣3
−

3𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)
𝑣𝑣

+
2𝑑𝑑𝑑𝑑2

𝑣𝑣
+

2𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)
𝑣𝑣

− 2𝑑𝑑𝑑𝑑 = 0 
 

𝑎𝑎2𝑑𝑑3

𝑣𝑣3
−

3𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)
𝑣𝑣

+ 2𝑑𝑑𝑑𝑑 +
2𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)

𝑣𝑣
− 2𝑑𝑑𝑑𝑑 = 0 

 
𝑎𝑎2𝑑𝑑3

𝑣𝑣3
−

3𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)
𝑣𝑣

+
2𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)

𝑣𝑣
= 0 

 
𝑎𝑎2𝑑𝑑3

𝑣𝑣3
+
−3𝑎𝑎𝑑𝑑2 cos(𝐴𝐴) + 2𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)

𝑣𝑣
= 0 

 
𝑎𝑎2𝑑𝑑3

𝑣𝑣3
+
−𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)

𝑣𝑣
= 0 

 
𝑎𝑎2𝑑𝑑3

𝑣𝑣3
=
𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)

𝑣𝑣
 

 
𝑎𝑎2𝑑𝑑3

𝑣𝑣2
= 𝑎𝑎𝑑𝑑2 cos(𝐴𝐴) 

 
𝑎𝑎𝑎𝑎
𝑣𝑣2

= cos(𝐴𝐴) 

 

𝐴𝐴 = cos−1(
𝑎𝑎𝑎𝑎
𝑣𝑣2

)  

 
This formula gives the optimal avert angle with a given acceleration, distance, and initial velocity. However, the 
maximum domain of the cos−1 function is 1, and 𝑎𝑎𝑎𝑎

𝑣𝑣2
 might be larger than 1. In that case, the minimum point of the 

Volume 13 Issue 3 (2024) 

ISSN: 2167-1907 www.JSR.org/hs 7



distance function cannot be set to 𝑥𝑥 = 𝑑𝑑
𝑣𝑣
  by changing the angle between 0˚ - 90˚. Therefore, this final equation only 

solves the optimal avert angle partially, within a certain situation, and the other portion remains to be solved.   
 
Solving for Optimal Avert Angle when 𝑎𝑎𝑎𝑎

𝑣𝑣2
> 1 

 
Even when 𝑎𝑎𝑎𝑎

𝑣𝑣2
 is outside of the domain of cos−1, the point mentioned previously where 𝑥𝑥 = 𝑑𝑑

𝑣𝑣
 still does not change 

regardless of the angle. To find the optimal avert angle when 𝑎𝑎𝑎𝑎
𝑣𝑣2

> 1, the relationship between the minimum point of 

the function in this situation and the fixed point at 𝑥𝑥 = 𝑑𝑑
𝑣𝑣
  must first be established. Below is the proof that for any 

angle in the distance function where 𝑎𝑎𝑎𝑎
𝑣𝑣2

> 1, 𝑑𝑑
𝑣𝑣
 will always be larger than the x-coordinate of the distance function’s 

minimum. As mentioned, when the derivative of the distance function reaches 0, the distance function is at its mini-
mum point. Since, after the minimum point, the rocket will continue to accelerate further away from the collision 
object, the derivative will continue to increase to a positive y-value. Therefore, if at the point 𝑥𝑥 = 𝑑𝑑

𝑣𝑣
, the y-value of the 

derivative is positive, this means 𝑑𝑑
𝑣𝑣
 is larger than the x-value of the derivative’s x-axis intercept, and thus 𝑑𝑑

𝑣𝑣
 is larger 

than the x-value of the minimum point. These calculations are almost identical to the calculations done above, except 
instead of making the equation equal to zero it is now greater than zero.   
 

Proving ( x = 𝑑𝑑
𝑣𝑣
 ) >0 on the Distance Function’s Derivative when 𝑎𝑎𝑎𝑎

𝑣𝑣2
> 1 

 
𝑥𝑥3(𝑎𝑎2) − 𝑥𝑥2(3𝑎𝑎𝑎𝑎 cos(𝐴𝐴)) + 𝑥𝑥(2𝑣𝑣2 + 2𝑎𝑎𝑎𝑎 cos(𝐴𝐴)) − 2𝑑𝑑𝑑𝑑 > 0 

 
𝑑𝑑3

𝑣𝑣3
(𝑎𝑎2) −

𝑑𝑑2

𝑣𝑣2
(3𝑎𝑎𝑎𝑎 cos(𝐴𝐴)) +

𝑑𝑑
𝑣𝑣

(2𝑣𝑣2 + 2𝑎𝑎𝑎𝑎 cos(𝐴𝐴)) − 2𝑑𝑑𝑑𝑑 > 0 

 
𝑎𝑎2𝑑𝑑3

𝑣𝑣3
−

3𝑎𝑎𝑑𝑑2𝑣𝑣 cos(𝐴𝐴)
𝑣𝑣2

+
2𝑑𝑑𝑑𝑑2 + 2𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)

𝑣𝑣
− 2𝑑𝑑𝑑𝑑 > 0 

 
𝑎𝑎2𝑑𝑑3

𝑣𝑣3
−

3𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)
𝑣𝑣

+
2𝑑𝑑𝑑𝑑2 + 2𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)

𝑣𝑣
− 2𝑑𝑑𝑑𝑑 > 0 

 
𝑎𝑎2𝑑𝑑3

𝑣𝑣3
−

3𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)
𝑣𝑣

+ 2𝑑𝑑𝑑𝑑 +
2𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)

𝑣𝑣
− 2𝑑𝑑𝑑𝑑 > 0 

 
𝑎𝑎2𝑑𝑑3

𝑣𝑣3
−

3𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)
𝑣𝑣

+
2𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)

𝑣𝑣
> 0 

 
𝑎𝑎2𝑑𝑑3

𝑣𝑣3
+
−3𝑎𝑎𝑑𝑑2 cos(𝐴𝐴) + 2𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)

𝑣𝑣
> 0 

 
𝑎𝑎2𝑑𝑑3

𝑣𝑣3
+
−𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)

𝑣𝑣
> 0 

 
𝑎𝑎2𝑑𝑑3

𝑣𝑣3
>
𝑎𝑎𝑑𝑑2 cos(𝐴𝐴)

𝑣𝑣
 

 
𝑎𝑎2𝑑𝑑3

𝑣𝑣2
> 𝑎𝑎𝑑𝑑2 cos(𝐴𝐴) 
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𝑎𝑎𝑎𝑎
𝑣𝑣2

> cos(𝐴𝐴) 
 
As shown here, when 𝑥𝑥 = 𝑑𝑑

𝑣𝑣
 is substituted into the derivative of the distance function with the inequality that the 

derivative at this point is greater than 0, after simplification, the result is that cos(𝐴𝐴) is less than 𝑎𝑎𝑎𝑎
𝑣𝑣2

. The condition 

before this calculation is that 𝑎𝑎𝑎𝑎
𝑣𝑣2

> 1, and since the maximum of cos(𝐴𝐴) is 1, this final inequality is true regardless of 

the angle. Therefore, when 𝑎𝑎𝑎𝑎
𝑣𝑣2

> 1, the derivative will always intersect the line 𝑥𝑥 = 𝑑𝑑
𝑣𝑣
 at a positive y-value, and the x-

value of the fixed point at  𝑥𝑥 = 𝑑𝑑
𝑣𝑣
 will always be larger than the x-value of the distance function’s minimum. 

 
 The relationship between the 𝑥𝑥 = 𝑑𝑑

𝑣𝑣
 point and the minimum has now been established. Returning once again 

to the distance function, where the terms can be expanded so that only the cosine trigonometric function remains using 
the Pythagorean identity: 

 
Expanding the Distance Function 
 

𝑦𝑦 = �(0.5𝑥𝑥2 a cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎 sin(𝐴𝐴))2 
 

𝑦𝑦 = �0.25𝑥𝑥4 cos2(𝐴𝐴)𝑎𝑎2  + 𝑥𝑥2𝑣𝑣2 + 𝑑𝑑2 + 2(0.5𝑥𝑥2𝑎𝑎𝑎𝑎 cos(𝐴𝐴) − 0.5𝑥𝑥3𝑎𝑎𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥𝑥𝑥) + 0.25𝑥𝑥4 sin2(𝐴𝐴)𝑎𝑎2  
 

𝑦𝑦 = �0.25𝑥𝑥4𝑎𝑎2(cos2(𝐴𝐴) + sin2(𝐴𝐴)) + 𝑥𝑥2𝑣𝑣2 + 𝑑𝑑2 + 2(0.5𝑥𝑥2𝑎𝑎𝑎𝑎 cos(𝐴𝐴) − 0.5𝑥𝑥3𝑎𝑎𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥𝑥𝑥) 
 

𝑦𝑦 = �0.25𝑥𝑥4𝑎𝑎2 + 𝑥𝑥2𝑣𝑣2 + 𝑑𝑑2 + 2(0.5𝑥𝑥2𝑎𝑎𝑎𝑎 cos(𝐴𝐴) − 0.5𝑥𝑥3𝑎𝑎𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥𝑥𝑥𝑥𝑥) 
 

𝑦𝑦 = �0.25𝑥𝑥4𝑎𝑎2 + 𝑥𝑥2𝑣𝑣2 + 𝑑𝑑2 + 𝑥𝑥2𝑎𝑎𝑎𝑎 cos(𝐴𝐴) − 𝑥𝑥3𝑎𝑎𝑎𝑎 cos(𝐴𝐴) − 2𝑥𝑥𝑥𝑥𝑥𝑥 
 

𝑦𝑦 = �0.25𝑥𝑥4𝑎𝑎2 − 𝑥𝑥3𝑎𝑎𝑎𝑎 cos(𝐴𝐴) + 𝑥𝑥2(𝑣𝑣2 + 𝑎𝑎𝑎𝑎 cos(𝐴𝐴)) − 2𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑑𝑑2 
 
Below is the proof that when 𝑎𝑎𝑎𝑎

𝑣𝑣2
> 1, as the angle A increases from 0˚ to 90˚, all distances between x-values of 0 ≤

𝑥𝑥 < 𝑑𝑑
𝑣𝑣
 constantly decreases. As proven above, this domain of x includes the minimum point of the distance function.  

 To investigate the change in the angle A that applies to all values of x within that boundary, x can now be 
substituted with a variable “b” and the range of “b” can be set as 0 ≤ 𝑏𝑏 < 𝑑𝑑

𝑣𝑣
 . Angle A can then be used as the input 

of the function by replacing A in the cosine function with x, and setting the domain of the function to be 0˚ < 𝑥𝑥 < 90˚, 
written as the function below:  
 
Modified Function with Angle as the Input 
 

𝑦𝑦 = �0.25𝑏𝑏4𝑎𝑎2 − 𝑏𝑏3𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑏𝑏2(𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑣𝑣2) − 2𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑑𝑑2 
 
To prove that as the angle A, or in this new function, x, increases, the y-value decreases, the new function can first be 
differentiated, finding the rate of change. If the derivative is always negative between the domain 0˚ < 𝑥𝑥 < 90˚, this 
means that the y-value is constantly decreasing as the angle A is increasing.  
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Proving of Modified Function’s Derivative as Negative for 0˚ < 𝑥𝑥 < 90˚ 
 

𝑦𝑦 = �0.25𝑏𝑏4𝑎𝑎2 − 𝑏𝑏3𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑏𝑏2(𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑣𝑣2) − 2𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑑𝑑2 
 

𝑦𝑦 = �0.25𝑏𝑏4𝑎𝑎2 − 𝑏𝑏3𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑏𝑏2𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑏𝑏2𝑣𝑣2 − 2𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑑𝑑2 
 

𝑦𝑦′ =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 (0.25𝑏𝑏4𝑎𝑎2 − 𝑏𝑏3𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑏𝑏2𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑏𝑏2𝑣𝑣2 − 2𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑑𝑑2)

2�0.25𝑏𝑏4𝑎𝑎2 − 𝑏𝑏3𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑏𝑏2𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑏𝑏2𝑣𝑣2 − 2𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑑𝑑2
 

 

𝑦𝑦′ =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 0.25𝑏𝑏4𝑎𝑎2 − 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 𝑏𝑏
3𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 𝑏𝑏
2𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 𝑏𝑏
2𝑣𝑣2 − 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 2𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 𝑑𝑑

2

2�0.25𝑏𝑏4𝑎𝑎2 − 𝑏𝑏3𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑏𝑏2𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑏𝑏2𝑣𝑣2 − 2𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑑𝑑2
 

 

𝑦𝑦′ =
𝑏𝑏3𝑎𝑎𝑎𝑎 sin(𝑥𝑥) − 𝑏𝑏2𝑎𝑎𝑎𝑎 sin(𝑥𝑥)

2�0.25𝑏𝑏4𝑎𝑎2 − 𝑏𝑏3𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑏𝑏2𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑏𝑏2𝑣𝑣2 − 2𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑑𝑑2
 

 
Now that the derivative of the function has been found, it can now be proven that the derivative is always negative 
from 0˚ to 90˚.  
 

𝑏𝑏3𝑎𝑎𝑎𝑎 sin(𝑥𝑥) − 𝑏𝑏2𝑎𝑎𝑎𝑎 sin(𝑥𝑥)

2�0.25𝑏𝑏4𝑎𝑎2 − 𝑏𝑏3𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑏𝑏2𝑎𝑎𝑎𝑎 cos(𝑥𝑥) + 𝑏𝑏2𝑣𝑣2 − 2𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑑𝑑2
< 0 

 
𝑏𝑏3𝑎𝑎𝑎𝑎 sin(𝑥𝑥) − 𝑏𝑏2𝑎𝑎𝑎𝑎 sin(𝑥𝑥) < 0 

 
𝑏𝑏3𝑎𝑎𝑎𝑎 sin(𝑥𝑥) < 𝑏𝑏2𝑎𝑎𝑎𝑎 sin(𝑥𝑥) 

 
𝑏𝑏3𝑎𝑎𝑎𝑎 < 𝑏𝑏2𝑎𝑎𝑎𝑎 

 
𝑏𝑏𝑏𝑏 < 𝑑𝑑 

 
𝑏𝑏 <  

𝑑𝑑
𝑣𝑣

 

 
Since the boundary of “b” when modifying the function is that 0 ≤ 𝑏𝑏 < 𝑑𝑑

𝑣𝑣
, this final inequality is always true, and 

therefore the derivative of the modified function is always negative. This means the y-value is always decreasing as 
the angle increases, and for all situations where 𝑎𝑎𝑎𝑎

𝑣𝑣2
> 1 the minimum point decreases as the angle increases.  

Since the optimal avert angle maximizes the minimum point’s distance, and as the angle increases the dis-
tance to the object at the minimum point decreases, this means that the optimal avert angle in all situations where 𝑎𝑎𝑎𝑎

𝑣𝑣2
>

1 is A = 0˚, where the angle is at its minimum and the minimum point’s distance is at its maximum.  
 
Calculating Minimum Distance  
 
Now that the optimal avert angles have been found, the minimum distance between the spaceship and the collision 
object’s center can also be calculated at that angle.  
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 As mentioned, for all situations where 𝑎𝑎𝑎𝑎
𝑣𝑣2
≤ 1 , where the function cos−1( 𝑎𝑎𝑎𝑎

𝑣𝑣2
) can be applied for the optimal 

avert angle, the minimum distance will be at 𝑥𝑥 = 𝑑𝑑
𝑣𝑣
 , when y = 𝑎𝑎𝑎𝑎

2

2𝑣𝑣2
 

 For the situations where 𝑎𝑎𝑎𝑎
𝑣𝑣2

> 1, the minimum angle A=0˚ can be substituted back into the distance formula, 
where the y-distance term is eliminated, to calculate the minimum distance:  
 

𝑦𝑦 = �(0.5𝑥𝑥2𝑎𝑎 cos(0) − 𝑣𝑣𝑣𝑣 + 𝑑𝑑)2 + (0.5𝑥𝑥2𝑎𝑎 sin(0))2 
 

𝑦𝑦 = �(0.5𝑥𝑥2𝑎𝑎 − 𝑣𝑣𝑣𝑣 + 𝑑𝑑)2 
 

𝑦𝑦 = 0.5𝑥𝑥2𝑎𝑎 − 𝑣𝑣𝑣𝑣 + 𝑑𝑑 
 
The distance formula, when A= 0˚, is now a quadratic equation, in which case the minimum x-value is − 𝑏𝑏

2𝑎𝑎
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑥𝑥 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = −
𝑏𝑏

2𝑎𝑎
= −

−𝑣𝑣
2 × 0.5𝑎𝑎

=
𝑣𝑣
𝑎𝑎

 

 

min = 0.5𝑎𝑎
𝑣𝑣2

𝑎𝑎2
−
𝑣𝑣2

𝑎𝑎
+ 𝑑𝑑 

 

min =
𝑣𝑣2

2𝑎𝑎
−

2𝑣𝑣2

2𝑎𝑎
+ 𝑑𝑑 

 

min = 𝑑𝑑 −
𝑣𝑣2

2𝑎𝑎
 

 

Results 
 
When a spaceship is flying towards an object, with a given acceleration (a), initial distance (d), and initial velocity (v), 
the optimal avert angle (A) to avoid that object and the minimum distance to the object at that angle are: 

 
If  𝑎𝑎𝑎𝑎

𝑣𝑣2
≤ 1 :  

A = cos−1( 𝑎𝑎𝑎𝑎
𝑣𝑣2

) , minimum distance = 𝑎𝑎𝑎𝑎
2

2𝑣𝑣2
 

 
If  𝑎𝑎𝑎𝑎

𝑣𝑣2
> 1 : 

A = 0˚, minimum distance = 𝑑𝑑 − 𝑣𝑣2

2𝑎𝑎
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Graphs of Results 
 

 
Figure 3 – 3D Visualizations of the Optimal Avert Angle. Figure 3A shows the optimal avert angle on the Z axis in 
radians, with acceleration (a) and distance (d) as the X and Y axes and a fixed velocity. Figure 3B shows the optimal 
avert angle on the Z axis in radians, with either acceleration (a) or distance (d) as the X axis and the other as fixed, 
while the Y axis is the initial velocity (v). Note that only the positive x- and y-values (right side quadrant) apply in 
both diagrams. 
 

Conclusion 
 
Real-World Applications   
 
The optimal avert angle can have a variety of potentially life-saving applications in the future of space travel, where 
traveling to outer space is more and more commercialized and frequent. In space, there are a lot of large objects that 
spaceships must try to avoid, including space stations, space cities, other spaceships, and natural bodies such as as-
terioids, moons, planets, and stars. When a spaceship realizes a potential crashing threat, it can use this model to find 
the best way to avoid the object, distancing itself from the crashing threat as far as possible. At high speeds, this angle 
could determine the survival or destruction of the spaceship. 

As space travel develops, there will also be more situations where the angle is critically important. For in-
stance, in the future, there might be certain restricted zones similar to restricted areas on earth. If a driver suddenly 
realizes the spaceship is flying into one of such zones, the driver must turn the spaceship as fast as possible to avoid 
the consequences of flying into the zone, in which case the angle is also helpful. Additionally, if a spaceship is flying 
into an object that is about to explode or an object releasing harmful radiation, the damage taken by the spaceship is 
inversely proportional to the distance to that object, in which case the angle can minimize the damage. 

Furthermore, although the model portrays the crash object as a point in space, in reality, the object would 
have a certain radius from its center. Consequently, calculating the minimum distance to the object would also be 
critically important. If the minimum distance is less than the radius of the object, then the spaceship would crash into 
the object even when using the best angle possible. Therefore, with the equations presented in the model, the spaceship 

A B 
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can predict whether it will survive or be destroyed in the crash avoidance maneuver. If it cannot successfully avoid 
the object, then it must take further emergency precautions, such as ejecting the passengers or sending out a rescue 
signal. In short, both the equations for the optimal avert angle and the minimum distance are highly valuable for the 
survival of spaceships and passengers during emergency situations in space. 
 
Reflection on the Objective 
 
The objective of this investigation was to develop a model to determine the optimal angle to accelerate at to avoid an 
object with a given acceleration, distance, and velocity, where all three variables are positive real numbers. Further-
more, the project aimed to calculate the minimum distance between the spaceship and the object’s center. Reflecting 
on the objective, both goals were clearly met in this investigation. The inverse cosine function in the result can calcu-
late an angle for any angle with a, d, and v as positive real numbers within 1, and the optimal angle for any value of  
𝑎𝑎𝑎𝑎
𝑣𝑣2

 greater than 1 has also been found to be 0˚. With the given equations, the investigation also found the two equations 
for the two separate situations to determine the minimum distance between the spaceship and the object’s center. As 
mentioned in the introduction, the model also focused solely on maximizing distance, disregarding fuel consumption 
and energy efficiency, as it is mainly used when the safety of the spaceship is at risk.  
 
Reflection on the Hypothesis 
 
The first hypothesis for this experiment was that velocity, acceleration, and distance would all play a factor in the final 
optimal angle of the spaceship, justified using two extreme situations between the three variables. The final equation 
does support this hypothesis, as all three variables are used in the equation to determine the final angle with the inverse 
cosine function. The equation also supports the two justifications previously mentioned to support the hypothesis. For 
instance, the hypothesis stated that if the velocity was much higher relative to acceleration and distance, the optimal 
angle would be more vertical, deviating from the path instead of trying to slow the spaceship down. In this situation, 
the faster the initial velocity, the closer 𝑎𝑎𝑎𝑎

𝑣𝑣2
 would be to 0. Between 0˚ and 90˚, cos−1(0) = 90˚ , supporting this state-

ment. On the contrary, when the acceleration is a lot faster relative to velocity, 𝑎𝑎𝑎𝑎
𝑣𝑣2

 would be closer to or above 1, in 
which case cos−1(1) = 0˚, and any situation above 1 would also have 0˚ as its optimal angle, flying directly toward 
the object to maximum its distance from the object’s center.  
 The second hypothesis is that if the relationship between a, d, and v is imagined as a number line, then the 
optimal angle would move from 0˚ to 90˚ within a segment of that number line, and from the two end points to the 
two extremes, the angle would be fixed at 0˚ and 90˚. However, this hypothesis is only partially supported. When 𝑎𝑎𝑎𝑎

𝑣𝑣2
 

is any value greater than 1, the optimal angle is fixed at 0˚. Therefore, this portion supports the second hypothesis. 
However, for the optimal angle to be fixed at 90˚, 𝑎𝑎𝑎𝑎

𝑣𝑣2
 must be equal to 0, as cos−1(0) = 90˚. In the context of this 

physics situation, neither acceleration nor distance can be equal to 0 for the situation to make sense. The only way for 
𝑎𝑎𝑎𝑎
𝑣𝑣2

 to be equal to 0 is when velocity is infinitely greater than acceleration and distance. Consequently, the optimal 
angle is only fixed at 90˚ when the initial velocity approaches infinity, and not after a certain point, as suggested by 
the number line example. Therefore, the second portion of the second hypothesis is not supported by the results. 
 
Limitations and Future Extensions 
 
One major limitation of this model is that it ignores another force that plays a significant role in the trajectory of the 
spaceship in avoiding collision with large objects: gravity. When escaping an object, the force of gravity would con-
stantly accelerate the spaceship towards its center, fighting against the acceleration of the spaceship. Therefore, a 
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future improvement to the investigation could be to account for the gravity of the object in the model. With gravity 
included, however, the optimal avert angle would likely be a function over time rather than a constant, as the direction 
pull of the gravity will constantly change relative to the spaceship. Therefore, the spaceship’s thrusters must constantly 
change their angle to counteract that pull. Nevertheless, this limitation only causes an imperfect estimation when 
encountering large celestial bodies such as moons, planets, and stars. For most other situations, such as avoiding a 
certain zone or space station, the gravity of the object is completely insignificant, and the model is still very useful in 
avoiding those objects.  
            Another limitation of the model is that it does not account for the time it takes for the spaceship to rotate itself 
with its thrusters to the optimal angle. This is another factor that could play a role in the model for the most precise 
angle possible. When the spaceship rotates, especially if its rotational thrusters are weak, waiting until it reaches the 
optimal angle would result in a large amount of precious time being lost, which could have been used to start escaping 
the crash object. Therefore, in a real situation, the best avoidance maneuver would likely be to immediately start 
accelerating when the spaceship angle is below 135˚, when the vertical vector of the acceleration away from the object 
is greater than the horizontal vector flying towards the object. However, calculating an optimal angle for a situation 
like that would be far more complex, as it involves the instantaneous rates of change for several factors, which then 
influence the rates of change for various forces acting on the spaceship. Nevertheless, it remains a potential improve-
ment to this mathematical model. 
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