Are Zinc Fingers of α-proteobacteria an Important Molecular Mechanism?

Pola Jakubowicz¹ and Nicola Tribe#

¹Adcote School for Girls, United Kingdom
#Advisor

ABSTRACT

The zinc-finger proteins in α-proteobacteria are considered to be the precursors of zinc fingers in higher Eukaryotes, due to their structural similarities and the crucial role played by α-proteobacteria during eukaryogenesis. Since they interact with macromolecules, their emergence in Bacteria, and later in the Eukarya, provided those organisms with major functional upgrades and evolutionary advantages. Hence, the aim of this research is to prove the important role of α-proteobacterial zinc fingers in this taxon, and the significance of their relics, present in higher Eukaryotes. A part of this investigation involved identifying similar zinc-finger proteins between α-proteobacteria and humans using the blastp algorithm, finding their shared domains in the CDD database, and modelling their structures in the ChimeraX programme. The remaining research objectives were reached by analysing data from pre-existing studies, in order to come up with an additional set of conclusions, relevant to this investigation. It was established that the Ros/MucR zinc-finger proteins regulate many pathways, crucial for the survival of α-proteobacteria and their interactions with Eukaryotes. Additionally, it was found that many zinc-finger proteins supply α-proteobacteria with eukaryotic mechanisms, which differentiate them from other bacterial taxa. It was also concluded that α-proteobacterial zinc fingers may be responsible for the resistance of α-proteobacteria to certain heavy metals. This investigation also proposes a new evolutionary hypothesis for the emergence of zinc fingers in Proteobacteria, and presents further arguments in favour of the theory that the Eukaryota acquired zinc fingers from α-proteobacteria during eukaryogenesis.

Introduction

The term zinc finger (ZF) describes a conserved protein domain, which can readily bind to DNA, RNA and other macromolecules, enabling certain proteins to regulate e.g. gene expression, cellular signalling pathways and nucleic acid metabolism (Krishna et al., 2003). In the most common structural type of ZFs, the Cys₂His₂, two cysteine and two histidine residues create four coordinate bonds with a Zn²⁺ ion, which ensures a proper conformation and, thus, the function of the domain. Other types include e.g. the Cys₃His ZFs (Chen et al., 2000), zinc ribbons and zinc-binding loops (Eom et al., 2016).

Initially, ZFs used to be regarded as eukaryotic inventions that got passed on to a small number of plant endosymbionts through horizontal gene transfer (HGT) (Chou et al., 1998). However, since then many more have been discovered in diverse Prokaryotes (D’Arosca et al., 2020), which provided a basis for the theory that ZFs have a prokaryotic origin and were acquired by Eukaryotes during eukaryogenesis from the Protonitochondrion in the α-proteobacteria class (Esposti et al., 2018).

Hence, investigating the role of ZFs in α-proteobacteria can provide valuable information about the capabilities of molecular regulation systems in one of the most advanced taxa in Bacteria. Additionally, it can help explain the wide range of functional improvements seen in α-proteobacteria, which act comparably and serve similar purposes to eukaryotic mechanisms. Moreover, this knowledge will clarify the evolutionary history of ZFs, and the proteins they are situated in.
Therefore, the aim of this study is to determine if α-proteobacterial ZFs played an important role in their evolutionary success, execution of crucial environmental processes, and in the advancement of other species. This conclusion will be reached by analysing ZFs in *a-proteobacteria* and their counterparts in other species from the perspective of molecular biology, focusing on their predicted conformation, epigenetic regulation of gene expression, performance under different cellular conditions, and molecular indications of adaptive evolution.

Materials and Methods

Research Papers, Websites and Computer Programmes

The majority of the research papers used in this investigation are deposited in Google Scholar (https://scholar.google.com/), with the rest being found through a Google search (https://www.google.com/). Scientific books used in the Glossary, and those mentioned in the bibliography were accessed from the Main Library of the University of Gdański in Poland. All used studies have been peer-reviewed.

This investigation utilised ZF protein sequences found in the Protein database of the National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/protein/). Subsequently, the Conserved Domains Database (CDD) (NCBI Conserved Domain Search, 2023) (Marchler-Bauer et al., 2017) was used to further investigate the ZF domains in the chosen proteins. The Protein Data Bank (PDB) (https://www.rcsb.org/) was accessed to import a reference experimental structure of an α-proteobacterial Zn coordination sphere. The Taxonomy Browser feature (NCBI Taxonomy browser (root), 2023) of the NCBI website was used in order to confirm the taxonomy of certain bacterial species.

Then, the blastp version of the BLAST algorithm (Altschul, 1997), available as a search engine on the NCBI website, was utilised to determine the prevalence of certain ZF proteins in *a-proteobacteria* and to find similar sequences between *a-proteobacteria* and humans. Since the blastn version of BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_SPEC=GeoBlast&PAGE_TYPE=BlastSearch) wasn’t able to find any similarities between α-proteobacterial and human gene sequences, this study didn’t investigate any ZF genes in *a-proteobacteria*.

Next, the freely available ChimeraX 1.4 programme (https://www.cgl.ucsf.edu/chimerax/) from the University of California San Francisco (UCSF) was used to access the ColabFold (Mirdita *et al.*, 2022) software, which accurately predicts and displays the 3D structure of proteins just from their sequence input. The rendered images were then converted into .png files to be analysed and, later, put into this research paper.

Objects of Research

Cadmium, copper and iron were included in this investigation as their high concentrations in the environment pose a big threat to microbial communities (Yu *et al.*, 2021) (Dragone *et al.*, 2022) (Braun, 1997). Therefore, it would be useful to determine if their toxicity in *a-proteobacteria* was linked to the disrupted function of their ZFs coordinating different metal ions. Conversely, if *a-proteobacteria* show resistance to elevated levels of metals in the environment, ZFs can be potentially responsible for protecting *a-proteobacteria* from their harmful effects.

Populations of *a-proteobacteria* in soil and those inhabiting hydrothermal vents are of special interest in this study, because a lot of α-proteobacterial species reside in the root nodules of host plants as nitrogen-fixing endosymbionts (Fatnassi *et al.*, 2015), while others occupy the rhizosphere (Shu *et al.*, 2012). Subsequently, hydrothermal vent micro ecosystems are similar to the first habitable environments on Earth, so they...
display well the metabolic pathways and ecological relationships appearing early in the history of life (Martin et al., 2008).

Results and Discussion

Examples of Zinc Finger Diversity in \(\alpha\)-proteobacteria:

The structure of the Ros/MucR ZF protein family was first fully characterised in an endosymbiont, \textit{Agrobacterium tumefaciens} (D’Abrosca et al., 2020), belonging to the nitrogen-fixing \textit{Rhizobiales} order in \(\alpha\)-proteobacteria (NCBI Taxonomy browser (root), 2023). This protein family contains a Cys\(_2\)His\(_2\) ZF (Fig 1) (Malgieri et al., 2015), similarly to the majority of eukaryotic ZFs.

![Figure 1. The Cys\(_2\)His\(_2\) Zn coordination sphere (coloured green) in Ros87 (2JSP – PDB entry), edited in ChimeraX.](image)

The Ros/MucR proteins also create expansive regulons, including up to 1350 genes (Jiao et al., 2020) (Jiao et al., 2022). Preliminary studies determined that genes under their control are responsible for nutrient sourcing, symbiosis, virulence (Cooley et al., 1991), general stress response and cell cycle regulation (Caswell et al., 2013). The ZF domains in Ros/MucR proteins contain highly conserved sequences across different orders in \(\alpha\)-proteobacteria. This statement is motivated by the fact that the 3D structures of their coordination spheres perfectly overlap in ChimeraX with the corresponding ones from other orders (Fig 2).
Figure 2. Ros/MucR ZF structures in *Rhizobiales* (NZ_CP033031.1 – NCBI Protein database entry, red) and *Rhodobacterales* (MBA4203399.1, green) in 2a), and *Caulobacterales* (MBV8681375.1, blue) in 2b), predicted and overlapped by AlphaFold (Mirdita et al., 2022) in ChimeraX. Yellow indicates conserved DNA-binding amino acids, while cyan – the ones that differ.

ZitP is a transmembrane ZF protein containing a zinc ribbon structure (Mignolet et al., 2016). Most importantly, it controls the morphogenesis of poles in bacterial cellular membranes, with respect to coordinating a Zn$^{2+}$ ion, which determines its conformation. These intentional structural changes influence its interactions with other co-regulators: CpaM and CpaC, resulting in the initiation of different cellular responses (Mignolet et al., 2016).

ZitP is widely distributed and highly conserved in *α-proteobacteria* (Mignolet et al., 2016) (Fig 3), however, a blastp (Altschul, 1997) search of YP_002517671.2 showed an inconsistent presence of ZitP in other classes of *Proteobacteria*, and its absence in *Archaea*.
This unequal ZitP distribution across different taxa implies that the ZitP-based regulation system has a clear prokaryotic origin and is a characteristic feature of α-proteobacteria.

Additionally, there are inactivated ZF domains present in α-proteobacteria, namely in the Ku proteins, also containing the zinc ribbon structure (Krishna et al., 2010). They bind to DNA during classical non-homologous end-joining (cNHEJ), the assembly process of antibody genes in B and T cells (Roth, 2015), and during the elongation of telomeres (Krishna et al., 2010). Eukarya and α-proteobacteria are the only taxons in which the Ku proteins have lost their Zn-chelating residues. This, in combination with the heterodimerization of the Ku70 and Ku80 subunits gave rise to a Zn-free bridge-like region present in their Ku proteins (Krishna et al., 2010). Evolving away from needing Zn was an adaptation to end the Zn-dependence of the Ku proteins, while retaining their functionally crucial zinc ribbon structure (Krishna et al., 2010).

Human Paralogs to α-proteobacterial Zinc Fingers

The sequence of the human ZNF184 protein (NP_001305820.1) shows similarity to the ZF proteins in the Rickettsiales and Brucella families. Those matches were found by the blastp algorithm (Altschul, 1997) in their C-terminal regions, which contain a eukaryotic COG5048 ZF domain (NCBI Conserved Domain Search, 2023) (Marchler-Bauer et al., 2017). Additionally, the minimal E-values for the blastp searches were smaller for Proteobacteria (1e-105) than for Archaea (5e-70) (Altschul, 1997), suggesting that the sequences in Proteobacteria are more similar to ZNF184 than the ones in Archaea and, thus, the acquisition of ZNF184 from the Proteobacteria.
Currently, no experimental structures of ZNF184 are deposited in PDB, so AlphaFold in ChimeraX was used in this investigation to predict the structures of the C-terminus of ZNF184, and its best α-proteobacterial match (RYE13711.1) (Mirdita et al., 2022) (Fig 4). Interestingly, the prokaryotic sequence gave rise to a very similar conformation to a fragment of the human one, which suggests that the gene of the α-proteobacterial protein multiplied over the course of evolution, forming the eukaryotic paralog in the process.

Figure 4. Structure of the human ZNF184 C-terminus (red) and its α-proteobacterial match (green) predicted in ChimeraX (Mirdita et al., 2022).

According to the blastp algorithm, the ZNF226 (XP_047295330.1) C-terminus containing the COG5048 ZF domain (NCBI Conserved Domain Search, 2023) (Marchler-Bauer et al., 2017) has similar sequences to the ones in α-proteobacteria, while the N-terminal region does not (Altschul, 1997). Favourably, the minimal E-value of the blastp search in Proteobacteria (6e-101) is lower than that in Archaea (5e-68), suggesting that those proteobacterial sequences are evolutionarily closer to human ZFs than the archaeal ones (Altschul, 1997).

No deposited ZNF226 structures were found in PDB, so AlphaFold in ChimeraX was used to predict the structure of the human ZNF226 C-terminus and its α-proteobacterial match (MBX8803466.1) (Mirdita et al., 2022) (Fig 5). These structure predictions present a similar result to the ZNF184 investigation, which suggests a close evolutionary relationship between α-proteobacterial and eukaryotic ZF proteins. Unfortunately, this AlphaFold prediction is not very accurate, according to the B-factor colouring in ChimeraX.
The ZNF23 (NP_001368913.1), similarly to ZNF184 and ZNF226, contains the COG5048 domain in its C-terminus (NCBI Conserved Domain Search, 2023) (Marchler-Bauer et al., 2017).

The prokaryotic protein MBX8819088.1 was used in order to visualise the clear structural overlap of the α-proteobacterial ZF on the ZNF23 C-terminus in ChimeraX (Mirdita et al., 2022) (Fig 6). Once again, this figure provides evidence for the existence of multiplication events in the evolutionary history of eukaryotic ZF proteins.

Figure 5. Structure of the human ZNF226 C-terminus (blue) and its α-proteobacterial match (yellow) predicted in ChimeraX (Mirdita et al., 2022).

Figure 6. Structure of the human ZNF23 C-terminus (orange) and its α-proteobacterial match (blue) predicted in ChimeraX (Mirdita et al., 2022).
In accordance with the CDD database, the C-terminal section of the ZNFX1 (EAW75661.1) contains domains exhibiting helicase properties (NCBI Conserved Domain Search, 2023) (Marchler-Bauer et al., 2017). Interestingly, this is also the region that shows similarity to α-proteobacteria (Altschul, 1997).

There are no experimental structures of ZNFX1 deposited in PDB, so the C-terminus of this protein and its closest α-proteobacterial match (MBV35386.1, 200…600 aa) were modelled in AlphaFold via ChimeraX (Mirdita et al., 2022) (Fig 7). The similarities in the structures of these proteins aren’t clearly visible, apart from the four Zn-binding sites indicated in the figure. This means that the ZNFX1 protein itself doesn’t provide any more evidence directly linking the multiplication of ancient α-proteobacterial ZF sequences with the formation of eukaryotic proteins.

![Figure 7](image-url)

Figure 7. Structure of the human ZNFX1 C-terminus (pink) and its α-proteobacterial match (yellow) predicted in ChimeraX (Mirdita et al., 2022). Four red arrows indicate Zn-binding sites that are located similarly in both proteins.

The ZNF384 (NP_001372675.1), containing the COG5048 domain is widely distributed across some Proteobacteria classes (Altschul, 1997). The structures of ZNF384 (200…500 aa) and its α-proteobacterial match (NP_001372675.1) were determined using AlphaFold in ChimeraX (Mirdita et al., 2022) (Fig 8). Similarly to ZNFX1, this figure contains no evidence in favour of the theory that eukaryotic ZF proteins come from the multiplied sequences of α-proteobacterial ZFs.
Figure 8. Structure of the human ZNF384 (turquoise) and its α-proteobacterial match (purple) predicted in ChimeraX (Mirdita et al., 2022). Two red arrows indicate Zn-binding sites that are located similarly in both proteins.

Overall, from these structure predictions it is possible to confidently hypothesise that the majority of ZF domains in the C-termini of human ZF proteins are paralogs of ZFs found in α-proteobacteria.

Regulatory Functions of Zinc Fingers in α-proteobacteria:

The Ros/MucR ZFs are classified as xenogeneic silencers, as the transcription of newly-acquired genes they regulate increases over time, leading to their successful conservation in the genome and, therefore, a repressed expression of novel genes (Jiao et al., 2022).

Additionally, the Ros/MucR proteins in α-proteobacteria are referred to as histone-like nucleoid-structuring proteins (H-NS). This is because they can bind to their own promoters, which suggests a negative feedback loop regulation of their own transcription. Ros/MucR also control the magnitude of their effect on gene expression, by adjusting the number of binding sites in their target promoters (Baglivo et al., 2018).

The genes activated by the Ros/MucR regulon (Jiao et al., 2020) (Fig 9) are involved e.g. in the production of exopolysaccharides (Nwodo et al., 2012), which are crucial in the formation of the biofilm, as they facilitate the process of cohesion to adjacent cellular walls, enabling bacteria to recognise each other. Exopolysaccharides also cause biofilms to retain large amounts of water, preventing the colonies from drying out in water-scarce environments (Nwodo et al., 2012).
Figure 9. The RosMucR regulon in α-proteobacteria (Jiao et al., 2020). Red arrows represent activation and green represent inhibition.

Moreover, Ros/MucR proteins up-regulate the transcription of genes encoding transport proteins for iron, molybdenum and sulphur, which are crucial in creating the catalytic properties of nitrogenase (Jiao et al., 2016). This enzyme facilitates the reaction of reducing atmospheric nitrogen to ammonia – a bioavailable form of nitrogen for plants, enabling them to develop properly in penurious soil (Wagner, 2011). Ros/MucR also activate genes of Zn$^{2+}$ and phosphate transporters, which ensure appropriate levels of these molecules in the bacterial cell and, thus, the proper development of root nodules, necessary for the symbiosis of plants with nitrogen-fixing α-proteobacteria (Jiao et al., 2016).

In Brucella canis (NCBI Taxonomy browser (root), 2023), the MucR transcription factors also regulate 38 genes involved in the last steps of the synthesis of the murein wall, making bacteria less vulnerable to lactam antibiotics, which disrupt these processes (Sun et al., 2021). It also plays a role in developing its pathogenicity, however, this mechanism is not entirely understood, as the MucR proteins down-regulate some genes encoding lipopolysaccharides (LPS) (Caswell et al., 2013), which are proven to be potent endotoxins (Bertani et al., 2018).

When the ZitP ZF protein chelates a Zn$^{2+}$ ion at one pole of the cell, it influences the swarming motility of bacterial groups and the activity of CtrA, which is a master cell cycle regulator, exclusive to α-proteobacteria. At the second pole, where ZitP does not coordinate Zn$^{2+}$, it is able to bind to CpaM and initiate the transport of CpaC to the outer membrane, which controls the biogenesis of bacterial pili (Mignolet et al., 2016). The N-terminus of ZitP can also interact with PopZ, enabling them both to control the process of cytokinesis (Bergé et al., 2016). It seems that α-proteobacteria have found a way of developing ‘isoforms’ in some of their proteins, by recruiting ZF domains to play that role, instead of performing alternative splicing alike the Eukaryotes (Zhiguo et al., 2013). This fine-tuned use of ZFs in α-proteobacteria proves a high structural complexity of their proteomes and the presence of Eukaryote-like regulation mechanisms in their molecular machinery.
Metal Substitution in α-proteobacterial Zinc Fingers

A Cd\(^{2+}\) substitution of the Zn\(^{2+}\) ion does not change the DNA-binding abilities of the Ros/MucR protein family, because the resulting change in conformation only affects one out of four basic regions involved in DNA interactions (Malgieri et al., 2014). This shows a great structural flexibility of this family, as their functionality isn’t impaired by the bigger ionic radius of Cd\(^{2+}\) (Shannon, 1976) in the Zn coordination sphere.

In the Ros/MucR family in α-proteobacteria, a Zn\(^{2+}\) to Cu\(^{+}\) substitution prevents proper conformations from forming, which leads to a complete deactivation of these proteins (Dragone et al., 2022). For those ZFs, high concentrations of Cu\(^{+}\) in the cell pose a big threat, as Cu\(^{+}\) is thermodynamically favoured over Zn\(^{2+}\) in Cys\(_2\)His\(_2\) ZFs (Doku et al., 2013). This means that those proteins are more likely to bind to Cu\(^{+}\) than to Zn\(^{2+}\) in the presence of both of these ions in the cytoplasm (Waldron et al., 2009), which results in their lack of functionality in Cu-rich conditions.

Additionally, a 2018 study found that the Cu\(^{+}\) ion readily replaces Zn\(^{2+}\) in the coordination sphere of a non-classical ZF domain in the copper response regulator 1 transcription factor (CRR1) (Kluska et al., 2018), which has been identified in α-proteobacteria (Altschul, 1997). Most importantly, this substitution does not result in significant changes to its structure and the DNA-binding abilities (Kluska et al., 2018), suggesting a functional Zn\(^{2+}\) to Cu\(^{+}\) substitution in this protein.

A Cu\(^{2+}\) substitution of Zn\(^{2+}\) does not result in functional Ros/MucR ZF domains, as they are unable to maintain their proper structure, caused by the oxidation of the two cysteines in their coordination sphere and the formation of a stable disulfide bridge between them. In this state, the hydrophobic core of the ZF can not enforce a proper fold, making the protein permanently non-functional (Dragone et al., 2022).

A Zn\(^{2+}\) replacement by Fe\(^{2+}\) in the Cys\(_2\)His\(_2\) ZF of the 5S RNA transcription factor TFIIIA inhibits its DNA recognition (Kluska et al., 2018). Despite it being a eukaryotic transcription factor, the blastp algorithm (Altschul, 1997) found ZF proteins in α-proteobacteria with similar sequences to its N-terminal region, abundant in ZF domains (NCBI Conserved Domain Search, 2023) (Marchler-Bauer et al., 2017). This suggests that these α-proteobacterial ZF proteins can also be susceptible to defective structural changes after Zn\(^{2+}\) to Fe\(^{2+}\) substitutions.

Despite the fact that the Fe\(^{3+}\) ions are more stable than Fe\(^{2+}\) (Kamboch, 2020), there aren’t any research papers published on the Zn\(^{2+}\) to Fe\(^{3+}\) substitution in α-proteobacterial ZFs specifically.

Populations of α-proteobacteria Inhabiting Metal-Abundant Environments

The incorporation of a Zn-enriched sewage sludge to soil has no short- and long-term effects on its α-proteobacterial population (Gomes et al., 2010). Additionally, in Zn-polluted soils about 10% of all prokaryotic species represent the nitrogen-fixing order of Rhizobiales (Liu et al., 2022) (NCBI Taxonomy browser (root), 2023). It was also found that plant inoculation with nitrogen-fixing α-proteobacteria in soil with a Zn concentration of 400 mg kg\(^{-1}\), increased their shoot and root lengths in comparison to the non-inoculated control plants (Fig 10). The biomass of those organs and the Zn uptake from the soil also rose significantly in the presence of α-proteobacteria (Jian et al., 2019), which proposes a new method of microbial bioremediation of Zn-polluted soils.
A-proteobacteria were found to be exceptionally resistant to high Cd levels in soil (Lorenz et al., 2006). Since Cd²⁺ can functionally replace Zn²⁺ in their ZFs (Malgieri et al., 2014), it means that a-proteobacteria could act as sinks for the Cd that manages to get to their cytoplasm, lowering its concentration in soil (Waldron et al., 2009). However, due to much higher Zn concentrations in soil than Cd (Wyszkowska et al., 2013), and the miniscule amount of Cd required to assemble ZFs, the effect of this substitution is negligible and, thus, would not influence their Cd resistance.

A-proteobacteria is one of the most abundant prokaryotic taxa in soil with Cu levels naturally elevated to 200 and 500 mg kg⁻¹ (Wang et al., 2008). Analogously to raised Zn levels, plant inoculation with nitrogen-fixing a-proteobacteria in soil with a Cu concentration of 400 mg kg⁻¹, increased the length of their shoots and roots (Fig 11). Furthermore, it also boosted the biomass of those organs and the Cu uptake from the soil (Jian et al., 2019). Thus, nitrogen-fixing a-proteobacteria can potentially be used in the microbial bioremediation of Cu-polluted grounds.

Figure 10. Increase in the shoot and root length in plants inoculated with a-proteobacteria in elevated Zn concentrations in soil (Jian et al., 2019).

Figure 11. Increase in the shoot and root length in plants inoculated with a-proteobacteria in elevated Cu concentrations in soil (Jian et al., 2019).
There are no open-access research papers published on the α-proteobacterial populations in Fe-polluted soils, thus no data about it can be presented here.

Four α-proteobacterial species show resistance to a 65 mg kg⁻¹ concentration of Zn²⁺ ions in the environment of the ‘Lucky Strike’ hydrothermal field (Farias et al., 2015). Additionally, in the Menez Gwen hydrothermal vent system, 13% of the genetic material from the bathyal zone with a Zn concentration of 80 mg kg⁻¹ was found to be α-proteobacterial (Cerqueira et al., 2015). However, in vent chimney samples, where Zn is way more abundant (>10,000 mg kg⁻¹), a-proteobacteria make up only 1% of all bacterial genetic material (Cerqueira et al., 2015). Therefore, vent a-proteobacteria do not display an exceptional Zn resistance in comparison to other extremophilic species inhabiting hydrothermal vents, and other members of this taxon living in Zn-polluted soil.

Four α-proteobacterial species from the ‘Lucky Strike’ were found to be resistant to a 22.4 mg kg⁻¹ concentration of Cd²⁺ (Farias et al., 2015). This means that there are some α-proteobacterial species in hydrothermal vents that are tolerant to elevated Cd concentrations. However, the literature about this resistance is scarce, so no further conclusions can be currently justified.

There are three species of a-proteobacteria identified in the ‘Lucky Strike’ that show resistance to a 63.5 mg kg⁻¹ Cu²⁺ concentration (Farias et al., 2015). Similarly, this topic isn’t well researched, and the tolerance of some strains to Cu is not an extraordinary characteristic, as it can just be a species trait.

The hydrothermal plumes of the Lau Basin in the south-west Pacific Ocean can be occupied by α-proteobacteria that lower the environmental concentrations of Fe³⁺ ions. This is because these plumes show an elevated level of ABC transporters of siderophores that come from the Rhizobiales order in α-proteobacteria (Cohen et al., 2021) (NCBI Taxonomy browser (root), 2023). After being released into the environment, siderophores chelate Fe³⁺ ions and bind to the membrane receptors of the bacteria. After that, Fe³⁺ is reduced to Fe²⁺, gets transported into the cell, and as a result, the Fe³⁺ concentration in the environment decreases (Deng, 2021). This means that a-proteobacteria can act as sinks for excess Fe³⁺ present in vent environments and, therefore, protect vulnerable species from its harmful effects. However, their ZFs do not seem to be involved in this process.

Evolution of Prokaryotic Zinc Fingers to Binding Zinc

In certain experimental conditions Zn can be favoured over Fe to bind to the IscU protein (Ramelot et al., 2004), necessary during the assembly of Fe/S clusters in other proteins (Py et al., 2010). The Zn-bound form retains the proper structure of this protein and closely resembles the Zn-coordination spheres of Cys₃His ZFs (Chen et al., 2000) (Ramelot et al., 2004). The γ-proteobacterial IscU protein, used in this study shows close sequence similarities to many α-proteobacterial IscU proteins, with the best matches having the E-value of 4e⁻⁷⁶ (Altschul, 1997). This means that this favoured Fe to Zn substitution could also happen in α-proteobacteria.

Five Cys₃His ZF domains and one Fe/S cluster are confirmed to be present in the CPSF30 factor, found primarily in the Eukaryota. It was found that CPSF30 loads Fe before Zn (Shimberg et al., 2016), which leads to the conclusion that it has a higher affinity to Fe than to Zn, and that it is more inclined to creating Fe/S clusters than ZFs in cysteine-rich micro-environments. The blastp algorithm found matches to CPSF30 mostly in γ-proteobacteria, with only one sequence in a-proteobacteria showing some similarity to CPSF30 (Fatnassi et al., 2015).

Conclusively, this data motivates the formation of a hypothesis that ZFs evolved from Fe/S clusters in Proteobacteria. Additionally, no arguments against this novel theory were found.

Acquisition and Evolution of Eukaryotic Zinc Fingers from a-proteobacteria
At the time of its discovery, the Ros/MucR protein family was known to be recognised by the transcriptional machinery of the Prokaryota, indicating that it was not a novel addition to the prokaryotic genome, and that it most likely evolved in pair with other prokaryotic proteins (Chou et al., 1998). However, during that time, the hypothesis that the Ros/MucR family originated in the Prokaryota was not widely accepted, due to the emergence of a theory of its HGT from plants (Chou et al., 1998). Although, after identifying the Ros/MucR protein family in a large quantity of α-proteobacteria (D’Abrosca et al., 2020), it has been proposed that the Cys2His2 ZF domain is indeed a prokaryotic invention (Moreira et al., 2000) which got distributed to the Eukaryota during eukaryogenesis (Esposti et al., 2018).

A blastp (Altschul, 1997) search in Archaea found six homologous sequences to Ros/MucR ZFs of α-proteobacteria, suggesting that this ZF domain was not present in the common ancestor of Archaea. This means that this ZF is not an archaeal invention, but rather originated in Bacteria, and that those six species likely acquired it by HGT (Wagner et al., 2017) from their α-proteobacterial endosymbionts. Coincidentally, α-proteobacteria have a very effective HGT mechanism – the gene transfer agent (GTA) (Richards et al., 2011). Since not a lot of species of Archaea have similar sequences to the α-proteobacterial Ros/MucR ZFs, it suggests that eukaryogenesis and, thus, the transfer of α-proteobacterial ZFs to Eukaryota was triggered rapidly, due to the widespread changes done by the α-proteobacterial genes to the Archaeans’ metabolism and signalling pathways.

Interestingly, a 2009 study states that the region around the two C-terminal ZFs in the Pol2p subunit of DNA ε-polymerase may have directly come from α-proteobacteria, while the ZFs themselves have a distinctive archaeal ancestry from their D- and B-family polymerases (Tahirov et al., 2009). The fact that this region of the polymerase is a fusion between archaeal and α-proteobacterial sequences, provides another piece of evidence in favour of the theory that ZF domains in the Eukaryota and the Archaea have an α-proteobacterial origin, as the genomes of α-proteobacteria and the Archaea merged together during eukaryogenesis and evolved to form the Last Eukaryotic Common Ancestor (LECA) (Esposti et al., 2018).

By this theory, the ZFs themselves extensively differentiated to better adapt to the needs of Archaeans, and then to the molecular systems of Eukaryotes. Thus, it is unsurprising that those ZF domains are deemed as archaeal, while the region surrounding them still resembles sequences found in α-proteobacteria.

Conclusions

The Wide Range of Molecular Approaches and Processes Regulated by ZFs in α-proteobacteria

The ZF protein families in α-proteobacteria show a diversified range of morphological approaches, from the Cys2His2 of the Ros/MucR family (Malgieri et al., 2015), the classical zinc ribbon of the ZitP (Mignolet et al., 2016) and an atypical one in the Ku proteins (Krishna et al., 2010). The proteins in the Ros/MucR family are the best investigated ones and are found to possess many evolutionarily advanced traits, such as: acting as xenogeneic silencers in the process of conserving novel genes (Jiao et al., 2022), and modulating their own transcription and regulation strength (Baglivo et al., 2018). Additionally, the pathways they control enable α-proteobacteria to survive in extreme environmental conditions (Nwodo et al., 2012), initiate the circulation of nitrogen – a crucial element in the ecosystem (Jiao et al., 2016), and to modulate their virulence in order to successfully invade other organisms (Bertani et al., 2018).

The ZitP protein controls entirely different pathways with respect to being bound to a Zn2+ ion, which changes its conformation (Mignolet et al., 2016) (Malgieri et al., 2014), producing a similar effect to alternative
splicing in the *Eukaryota* (Zhiguo *et al.*, 2013). This property increases the informational capacity of the bacterial chromosome and provides a major functional advancement in the proteome compared to other *Prokaryota* (Zhiguo *et al.*, 2013).

Crucial DNA metabolism in *a-proteobacteria* is also regulated by proteins with ZF motifs, most notably the Ku proteins (Krishna *et al.*, 2010) (Roth, 2015), which gained independence from environmental Zn by evolving to retain their shape in its absence (Krishna *et al.*, 2010). This proves a critical role of the ZF structure in managing genetic information.

Overall, the properties of *α*-proteobacterial ZFs enable them to precisely express genes crucial for their survival, the circulation of elements in the biosphere, and their ecological relationships that integrate them into the existence of higher Eukaryotes. Additionally, they provide *a-proteobacteria* with structural and functional advancements in the genome and the proteome, making them more similar to eukaryotic networks. All of these developments result in *a-proteobacteria* being better equipped to survive in hostile environmental conditions.

The Morphological Resemblance of ZF Proteins in α-proteobacteria to the Complex Eukaryotic Ones

Certain human ZF proteins contain COG5048 Zn-binding domains (NCBI *Conserved Domain Search, 2023*) (Marchler-Bauer *et al.*, 2017), which are paralogous to specific *α*-proteobacterial sequences (Altschul, 1997). These domains are made out of multiple segments with very similar predicted structures to the *α*-proteobacterial proteins (Mirdita *et al.*, 2022), suggesting that those bacterial sequences multiplied over the course of evolution to create advanced Zn-binding sites in the proteins of higher Eukaryotes. The ZNFX1 protein is especially interesting, as it shows the greatest similarity to the sequences that are recognised as *α*-proteobacterial (Altschul, 1997) DNA and RNA helicase domains (NCBI *Conserved Domain Search, 2023*) (Marchler-Bauer *et al.*, 2017). This implies that some ZF proteins of higher Eukaryotes originated from *α*-proteobacterial ones, already involved in the metabolism of nucleic acids.

The type II introns, found abundantly in *a-proteobacteria*, mitochondria and plastids (Casalino, 2017) can be responsible for the lack of similarity between the *α*-proteobacterial and human genes in this investigation, but a distinctive resemblance in the sequence and the morphology of their proteins. This is because the intron sequence itself can differ dramatically (de Lencastre *et al.*, 2005), depending on the epigenetic regulation and the genome topology present in the cell, while the exons retain a similar, functional sequence. Additionally, type II introns contain ZFs in their structure (Martínez-Abarca *et al.*, 2000), which makes these domains further responsible for increasing the amount of different proteins that can be produced in those organelles and the *a-proteobacteria*.

The Ability of α-proteobacterial Zinc Fingers to Function in Different Environmental Conditions and Its Ecological Implications

The Zn resistance of soil (Dragone *et al.*, 2022) and vent (Cerqueira *et al.*, 2015) *a-proteobacteria* can be explained with their RND Zn excretion mechanisms, which are regulated by the Ros/MucR proteins (Blindauer, 2015). However, RNDs are not able to result in *a-proteobacteria* significantly reducing Zn concentrations in the soil (Liu *et al.*, 2022), which suggests the need for a more comprehensive explanation of the bioremediation properties of *a-proteobacteria*.

Despite functioning after a Zn$^{2+}$ to Cd$^{2+}$ substitution (Malgieri *et al.*, 2014), ZFs are unlikely to play a big part in creating Cd resistance in soil (Lorenz *et al.*, 2006) and vent (Farias *et al.*, 2015) *a-proteobacteria*, as their role would have a negligible effect on the Cd concentration in their cytoplasm. Coincidentally, *α-...*
proteobacteria possess a putative Cd efflux system (Salam et al., 2020), which, by itself, can be responsible for their high Cd tolerance.

The Ros/MucR proteins experience irreversible structural degradation when coordinating Cu\(^{2+}\) ions (Dragone et al., 2022) and favour Cu\(^+\) binding over Zn\(^{2+}\), which also leads to their inactivation (Doku et al., 2013). These properties create an opportunity to use Cu\(^+\)-vulnerable ZFs in the expression of genes involved in stabilising the Cu\(^+\) concentration in the cytoplasm, which could help explain the Cu resistance of soil \(\alpha\)-proteobacteria (Lorenz et al., 2006). The potential use of \(\alpha\)-proteobacteria in bioremediation may be due to the presence of another mechanism, e.g. Cu-chelating exopolysaccharides on their cellular membrane (Llamas et al., 2010).

Vent \(\alpha\)-proteobacteria can act as Fe\(^{3+}\) sinks, as they developed Fe\(^{3+}\) to Fe\(^{2+}\) reduction mechanisms (Cohen et al., 2021) (Deng, 2021). However, the Fe\(^{2+}\) ions are confirmed to negatively affect \(\alpha\)-proteobacterial ZFs (Kluska et al., 2018). This can mean that Fe\(^{3+}\) ions overall pose a bigger threat to \(\alpha\)-proteobacteria than Fe\(^{2+}\) ions, or that \(\alpha\)-proteobacteria are able to precisely control the amount of free Fe\(^{2+}\) in their cytoplasm, partially in order to protect their ZF proteins.

The Evolutionary History of Zinc Fingers and Its Implications On Other Taxa

There is compelling evidence in favour of the hypothesis that ZFs evolved from Fe/S clusters in Proteobacteria. This is mostly because some proteins, e.g. IscU, create Zn-bound clusters more readily than Fe/S clusters (Ramelot et al., 2004) and others, e.g. CPSF30, display an assumed ancestral trait of favouring the creation of Fe/S clusters over ZF domains in cysteine-rich sites (Shimberg et al., 2016). This result was rather unexpected, as it was anticipated to find evidence that ZFs first appeared in \(\alpha\)-proteobacteria. Nevertheless, this evolution can be an adaptation to unstable environmental conditions during the diversification of Proteobacteria from other phylums, most notably a change of Fe concentration in the oceans; or caused by the need for proteins specifically suited for DNA-binding.

Over time, the hypothesis that eukaryotic ZFs have an \(\alpha\)-proteobacterial origin through eukaryogenesis has been strengthening (Moreira et al., 2000). This is because the ZFs from the Ros/MucR protein family were identified in a wide range of bacteria (D’Abrosca et al., 2020), with the ZFs from \(\alpha\)-proteobacteria being the most similar to the eukaryotic ones (Esposti et al., 2018), and requiring minimal point mutations to transform into them (Netti et al., 2013). On top of this structural argument, the Ros/MucR ZFs create a large regulon in proteobacterial cells (Jiao et al., 2020), meaning that the ZFs are precisely interacting with the evolutionarily old and conserved proteins of the bacterial transcription machinery, which implies their prolonged coevolution and, thus, proves the proteobacterial origin of all ZF proteins.

Improvement Areas and Objectives for Future Investigations

Due to the lack of similarity detected by the blastn algorithm between \(\alpha\)-proteobacterial and human genes of ZF proteins, a part of this investigation was confined to analysing only protein sequences. Thus, another search algorithm should be used in future studies aiming to compare \(\alpha\)-proteobacterial and human genes. It would have also been very beneficial for this study to use a computer programme that can predict the position of coordination spheres in modelled proteins, and which metal ions they can include. Additionally, \(\alpha\)-proteobacteria occupying a wider variety of ecosystems should be investigated for the presence of abnormalities in their response to heavy-metal pollution, especially caused by iron. Moreover, in order to come to more confident conclusions about the evolutionary history of ZFs in higher Eukaryotes, a greater amount of complex ZFs should be evaluated and compared to their prokaryotic counterparts. There are also more studies needed to confirm or deny the evolutionary hypotheses proposed in this investigation, since recreating a precise evolutionary history of ZF domains is outside the scope of this investigation. Nevertheless, this research proposes...
an intriguing evolutionary scenario, well-suited to the possible functional and environmental causes of this adaptation.

Acknowledgments

I would like to thank my advisor for the valuable insight provided to me on this topic.

References

National Center for Biotechnology Information (2023) *Taxonomy browser (root)*. Available at: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi [accessed: 20 February 2023].

