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ABSTRACT 

Though many advances have been made in exploring the ‘cloaking’ capabilities of metamaterials and optical 
systems in a wide range of the light spectrum, e.g. electromagnetic cloaking or paraxial ray optics, the phenom-
enon of unidirectional cloaking associated with ‘woodpile’ optical structures has not yet been widely discussed 
in the scope beyond experimental findings or digital integral cloaking; moreover, the relatively low cost of a 
lenticular array renders the investigation of its concealment properties in the visible regime of great interest for 
practical purposes. Thus, the following research paper provides an comprehensive theoretical model and ana-
lytical criterion for the phenomenon of unidirectional cloaking in the visible regime associated with a lenticular 
microlens array within the methods of computational ray optics (computing lens’s spherical aberration using 
governing ray optics equations) and Weber’s contrast (as perceived by the human eye) by considering the con-
cealed object’s virtual image as seen through a lenticular lens. Having shown that the criterion for practical 
invisibility adheres to our experimental results in determining the boundary case of invisibility, we employed 
it to explore the effect system parameters have on the array’s cloaking capabilities. We established that the 
critical parameter for the array’s cloaking capability is the diverging angle of an array’s lenticular lens, the 
value of which positively correlates with the refraction index and the lens concave segment’s curvature. There-
fore, a lenticular array with most prominent cloaking capabilities consists of lenses with the greatest admissible 
index of refraction and a 𝜋𝜋 arc measure for the lens’s concave segment. 

Introduction 

A lenticular sheet, a.k.a. a lenticular microlens array is a transparent sheet that consists of an array of cylindrical 
plano-convex lenses arranged in a row, and often finds use in packaging and advertisements, where the tech-
nology of lenticular printing is used on packages or labels in order to create visual effects such as adding depth 
to the image, three dimensionality, the illusion of motion or the appearance of differing images seen through 
the lens depending on the angle at which the image is observed (1). According to Johnson and Barry (2), the 
active use of lenticular arrays for the purpose of visual effects began in the 1920’s. In the same article the 
possibilities of lenticular arrays are further explored with the objective to develop a realistic analytical model 
and significantly improve image quality. A peculiar application of lenticular sheets is integral photography (the 
purpose of which is to allow users to see stereoscopic 3D images from arbitrary directions), where two perpen-
dicularly placed lenticular sheets are used as a cheaper alternative to a “fish-eye” lens (3). Nowadays, lenticular 
arrays can also be found in art and specialized electronic displays.  

An interesting property of a lenticular lens array, however, is not only its ability to create visual effects, 
but also to alter virtual images, concealing objects under certain conditions without the screening of their back-
ground and practically making the object invisible to the human eye in the visible regime (4) (see fig.1). The 
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research on lenticular lens cloaking capabilities is of current interest to science as the optical concealment ap-
plications range widely, from photography to urban design and architecture; meanwhile, the production cost for 
lenticular arrays is cheap when compared to more complex optical systems or metamaterials with similar cloak-
ing capabilities. 
 

 
 
Figure 1. The effect of optical invisibility in a lenticular microlens array is demonstrated. Rows of 
lenticular lenses on the transparent lenticular sheet are arranged horizontally. 
 

Overall, optical invisibility is an active research topic in physical optics: a holistic overview of ad-
vances in the field is provided by G. Gbur (5). For instance, in recent years, many findings in perfect invisibility 
have been made under transformation optics, where complex metamaterials have been shown to implement 
deformations in electromagnetic fields for the purposes of cloaking (6). Moreover, ray optics invisibility has 
also advanced significantly: Howell and Choi presented their approach to multidirectional object cloaking in 
the visible regime via axisymmetrical lenses (though the optical system grants a relatively small region available 
to cloaking) (7), as well as described active digital integral cloaking including an output lenticular lenslet array 
and employing digital displays for the purposes of simulating omnidirectional invisibility (8); Zhu, Lao, etc. 
experimentally demonstrated the cloaking effect for woodpile optical structures such as a lenticular array, and 
also discussed the cost-effective methods for 3D-printing of such optical systems (4). However, interestingly 
enough, the passive optical concealment capabilities of lenticular arrays, though unidirectional, have not been 
widely explored, nor, most importantly, has there been an analytical criterion for practical invisibility derived 
with consideration of the image’s contrast perception by the human eye.  

We hypothesized that the phenomenon of practical invisibility in the visible regime for a ‘woodpile’ 
optical array is not due to cloaking per se, but due to the strong diverging capabilities of a lenticular lens beyond 
its focal point, resulting in the object’s virtual image distortion along one of its axis (fig.2B) and declining 
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perceived contrast with the background (meanwhile objects with noticeable width in the transverse section 
plane of the lens, in other words elongated objects placed perpendicular to the rows of lenticular lenses do not 
produce a distorted image. This is due to the fact that incident rays along the axis perpendicular to lens rows do 
not experience divergence). Therefore, in the scope of our research, we develop a novel criterion for cloaking 
based on Weber’s contrast between the computed virtual image and object’s background, which we then em-
ployed to explore how the cloaking capabilities of a lenticular microlens array depend on the diverging proper-
ties, particularly the diverging angle between extreme incident rays of lenticular lenses in the array.  

 

 
 
Figure 2. 

(A) Transverse section of the lenticular microlens array (Axclear 70 LPI (ViPrint Clear Impact 
lens 70 Lpi) lenticular sheet) used in the boundary invisibility experiment as seen under the 
microscope with dimensions provided. 

(B) We may consider the lenticular sheet to be a superposition of two optical systems - that of a 
plane-parallel plate and a lenticular lens outline. Rays along the first keep their trajectory, 
while those passing through the lens’s transverse section strongly diverge. 

 

Results 
 
Single Lenticular Lens Spherical Aberration Modelling 
 
Consider the lens’s spherical aberration to be the virtual image of the object placed after the lenticular array – 
a justifiable proposition if the lens’s size is negligible when compared with the object dimensions. By applying 
Snell’s law of refraction (13) and considering system parameters including 𝑅𝑅 (radius of curvature of the lentic-
ular lens’s convex segment), 𝑛𝑛 (lens’s refraction index), 𝐻𝐻 (the height of the lens’s convex segment), 𝑊𝑊 (the 
horizontal width of a lenticular lens in its transverse section), 𝐷𝐷 (distance from the lens to the object/screen), 
we aim to find the final coordinate 𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 of the point of intersection between the refracted light and the screen 
axis relative to the symmetry axis of the lens, as well as the angle at which the light has left the lens 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 
depending on 𝑋𝑋𝑒𝑒𝑖𝑖, the initial incident ray coordinates relative to the lens’s symmetry axis. The range of values 
for 𝑋𝑋𝑒𝑒𝑖𝑖 is determined solely by the width, 𝑊𝑊, of the lenticular microlens. We have acquired a system of gov-
erning equations for the spherical aberration of a lenticular lens within ray optics (see fig.3). For the sake of 
simplifying computation, we have rewritten the ray transfer matrices (14) into algebraic notation.  

 
(1) sin𝛼𝛼 = 𝑛𝑛 ⋅ 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠, Snell’s law of refraction. 

(2) sin (𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
sin (𝛼𝛼−𝛽𝛽)

= 𝑛𝑛, Snell’s law for ray exiting the lens 
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(3) 

⎩
⎪
⎨

⎪
⎧ 𝑙𝑙 = 𝐻𝐻 −�𝑅𝑅2 − �𝑊𝑊

2
�
2

sin α =  Xin/R
Y = R √1 − sin2 𝛼𝛼

Xexit  =  𝑙𝑙
cot (𝛼𝛼−𝛽𝛽)

− Xin 

,  geometrical ratios 

 
 

 
 
Figure 3. (A) – transverse schematic of a lenticular lens; Ray refraction trajectories:  (B) - metric, (C) 
– angular 
 

Thus, the lens’s aberration and ray incident trajectories are computed based on these equations (fig. 
4). Moreover, the coordinate of the critical ray liable to full internal reflection was acquired: X1cr  →  R. The 
methods and corresponding governing equations for modelling a bottom-oriented lenticular lens spherical ab-
erration are identical to those of top orientation: 

 

(4) �
sin(f) =  n · cosα , 𝑆𝑆𝑛𝑛𝑆𝑆𝑙𝑙𝑙𝑙′𝑠𝑠 𝐿𝐿𝐿𝐿𝐿𝐿

cos α =  Xin/R
Xexit  =  Xin  −  tan(f −  α) (D −  � Xin2  − R2   ) 

, 

 
where 𝑓𝑓 is the angle at which the incident ray has left the lens (relative to the normal) and 𝑌𝑌1 is the 

distance from the top of the lens to the screen.  Solving the system for a set of 𝑋𝑋𝑒𝑒𝑖𝑖 coordinates (lying in the 
range of 𝑊𝑊, the lens’s horizontal width), we retrieve the lens’s spherical aberration. Moreover, it has been 
derived that the initial coordinate of the critical ray liable to full internal refraction is Xcr  →  2

3
𝑅𝑅.  
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Figure 4. Computer simulation of spherical aberration through a lenticular lens past the focal point represented 
graphically.  (1)– lenticular lens; (2) – distant observer;  (3) - screen plane. The light rays liable to total internal 
reflection are marked in red. Computed in Wolfram Mathematica software. 
 
Criterion for Lenticular Lens Practical Invisibility in The Visible Regime 
 
The lens’s spherical aberration may be represented via a distribution function dependent on the coordinate 
relative to the symmetry axis of the lenticular lens. For these purposes, the Cauchy distribution was fitted via 
the Least Squares Fit method (Fig. 5). 
 

 
 
Figure 5. Cauchy distribution function fitted to ray distribution histogram of on-screen rays retrieved from the 
computed model of the lenticular lens’s spherical aberration. 
 

(𝟓𝟓)    f(x)  =  b −  a
𝑒𝑒2

c2  
+ 1

    Cauchy Distribution 
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Knowing the I(x) ray distribution function, in other words, the intensity distribution for a lenticular 
lens (determined by inputted system parameters) and the coordinates of an object’s particular transverse section 
on the screen, we can determine the ratio of the light rays reflected off the object to the rays reflected off the 
object’s background (the screen) for the object’s image by integrating the intensity distribution. 

 

(6)   Ф =
∫ 𝐼𝐼(𝑥𝑥)𝑑𝑑𝑥𝑥𝑒𝑒2
𝑒𝑒1

∫ 𝐼𝐼(𝑥𝑥)𝑑𝑑𝑥𝑥 − ∫ 𝐼𝐼(𝑥𝑥)𝑑𝑑𝑥𝑥𝑒𝑒2
𝑒𝑒1

𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒
−𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒

 

 
where 𝑋𝑋1 and 𝑋𝑋2 are the coordinates of the object on screen relative to the lens symmetry axis, 𝑥𝑥𝑚𝑚𝑚𝑚𝑒𝑒 

and −𝑥𝑥𝑚𝑚𝑚𝑚𝑒𝑒 are the on-screen coordinates of the two extreme light rays. As stated in the hypothesis, the effect 
of optical invisibility is believed to be due to the contrast between the object’s image and background tending 
to the contrast threshold value (M) - the minimum contrast value distinguishable by the human eye (M = 0.02).  
Therefore, we must first determine the brightness of the object’s image when discussing invisibility, as, accord-
ing to Weber-Fechner’s Law (9,10), the contrast coefficient between the object’s image and its background is 
calculated via Weber’s contrast. From the ray distribution function, I(x), we can express the brightness of the 
image, as it consists both of rays reflected from the screen and objects surfaces. 

 

(7)   Bimg  =  
Bobj  ·  ∫ 𝐼𝐼(𝑥𝑥)𝑑𝑑𝑥𝑥𝑒𝑒2

𝑒𝑒1 + Bbackgr · (∫ 𝐼𝐼(𝑥𝑥)𝑑𝑑𝑥𝑥 − ∫ 𝐼𝐼(𝑥𝑥)𝑑𝑑𝑥𝑥𝑒𝑒2
−𝑒𝑒1

𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒
−𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒

)

∫ 𝐼𝐼(𝑥𝑥)𝑑𝑑𝑥𝑥 𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒
−𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒

 

 
We may for convenience consider the coordinates of the object on the screen axis to be −𝑙𝑙 and  𝑙𝑙 in 

order for it to be symmetric relative to the symmetry axis of the lens - such a simplification is based upon the 
fact that there will often be a lens on the lenticular sheet for which the shared symmetry of the object and the 
single lens itself will hold true (due to the negligibly small dimensions of a single lens when compared to the 
object size or the value of distance from the screen). 

 
(8) Bimg = Bobj ·  ∫ 𝐼𝐼(𝑥𝑥)𝑙𝑙

−𝑙𝑙 + Bbackgr · (1 − ∫ 𝐼𝐼(𝑥𝑥)𝑙𝑙
−𝑙𝑙 ) 

(9) Weber’s Contrast: 𝐾𝐾 =
𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐵𝐵𝑜𝑜𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝐵𝐵𝑜𝑜𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
 , 

where 𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 ,𝐵𝐵𝑜𝑜𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 are the corresponding object and image brightness values. 
 

Applying this to Weber’s contrast formula and simplifying the expression the condition of optical 
invisibility for a lenticular lens array is described by the following analytical inequality: 

(10) � I(x)dx ·
|Bbackgr −  Bobj|

Bbackgr
 ≤  𝑀𝑀

𝑙𝑙

−𝑙𝑙
 

 
Boundary Cloaking Experiment 
 
We aimed to test the cloaking criterion for the boundary case of invisibility via experiment. The perceived 
optical invisibility behind a lenticular sheet occurs when the contrast value (Weber’s contrast) between the 
object’s background and the object’s image through the lens drops below the empirical minimum threshold 
value for the human eye. Thus, for our experimental setup (see fig.8), we placed an object of variable width, 
such as a filled triangle outline, behind the lenticular sheet in order to determine the extreme case of optical 
invisibility by considering the object’s maximum width liable to concealment due to Weber’s contrast criteria 
(9,10) while varying the independent variable of the distance betwen the lenticular sheet and object.  
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Using computer image processing software (see ‘Methods’), we registered the point along the trian-
gle’s median where the image’s contrast with the background is equal to the contrast threshold value, and, thus, 
determined the maximum width liable to optical concealment dependent on the distance between the lenticular 
sheet and the object (see fig.6) 

In order to confirm the derived invisibility criteria (formula 10) by comparing it with the boundary 
invisibility experiment (see ‘Results’), we considered the criteria’s extreme case (boundary condition for prac-
tical invisibility): 
 

(11) � I(x)dx ·
|Bbackgr −  Bobj|

Bbackgr
 =  𝑀𝑀

𝑙𝑙

−𝑙𝑙
 

 
To determine the I(x) function, we computed the spherical aberration for the lens used in the experi-

ment – the lens’s geometrical and optical parameters as input parameters, as well as the initial contrast between 
the object (dark triangle) and background (light screen), were assessed beforehand (see ‘Materials and Meth-
ods’). Thus, we computed the dependency of the maximum object width liable to concealment, 2𝐼𝐼𝑚𝑚𝑚𝑚𝑒𝑒, on the 
distance between the object and the lenticular sheet, H, and compared it to the boundary invisibility experiment 
(see fig.6). 
 

 
 
Figure 6. Experimental value of the maximum width, Wmax, of an object liable to optical concealment behind 
a lenticular sheet compared with the theoretical value of 2𝐼𝐼𝑚𝑚𝑚𝑚𝑒𝑒 (see ‘Discussion’) dependent on the distance 
between the object and the lenticular sheet. Results of the boundary case invisibility experiment: dependency 
of the maximum object width liable to optical concealment on the distance. 
 
Effect of Lens’s Diverging Properties On an Array’s Cloaking Capabilities 
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In the scope of the hypothesis, we investigated how the cloaking capabilities of the array depend on the diverg-
ing properties of a single lenticular lens. For this, a link was made between the theoretical boundary cloaking 
criterion (which we derived in previous sections) and the lens’s optical properties. 

The growth of the value ∫ I(x)𝑙𝑙
−𝑙𝑙 𝑑𝑑𝑥𝑥, the integral intensity distribution, in correlation with value of 𝑙𝑙, 

we defined as the function 𝐼𝐼𝑛𝑛𝐼𝐼(𝑙𝑙). As (
Bbackgr− Bobj

Bbackgr
), the initial contrast, is an experimentally determined con-

stant, if aiming to maximize 𝑙𝑙 and meet the invisibility concealment criteria, we must minimise the rate of 
growth of the function 𝐼𝐼𝑛𝑛𝐼𝐼(𝑙𝑙). Therefore, when comparing the optical concealment properties of lenses, the 
corresponding 𝐼𝐼𝑛𝑛𝐼𝐼(𝑙𝑙) functions are compared. Consider the asymptotic case of 𝐼𝐼𝑛𝑛𝐼𝐼(𝑙𝑙) with 1 being the asymp-
tote, expressing 𝐼𝐼𝑛𝑛𝐼𝐼(𝑙𝑙) in terms of the Cauchy distribution parameters. 
 

� I(x)dx =   �−
a

𝑥𝑥2
c2  +  1

  dx = −ac · arctan �
𝑥𝑥
𝑐𝑐�

+ 𝐶𝐶) 

Int(l)  =  −2ac · arctan( 
l
c

  ) 

 
The function’s asymptote has the value of 1 with one of the parameters being equal to 2/pi: 

(𝟏𝟏𝟏𝟏)   Int(l)  =  
2
π

  ·  arctan(  
l
c
 )  

 
Hence c is the only parameter of 𝐼𝐼𝑛𝑛𝐼𝐼(𝑙𝑙), meaning that all 𝐼𝐼𝑛𝑛𝐼𝐼(𝑙𝑙) functions for our ray distribution are 

of the same shape, but reach the extremum of 1 at different coordinates. 𝐼𝐼𝑛𝑛𝐼𝐼(𝑙𝑙) corresponds to the growth of 
the definite integral of the 𝐼𝐼(𝑥𝑥) ray distribution function for different 𝑙𝑙 values, the object’s dimensions. From 
the extreme case of the invisibility criteria we know that the definite integral is equal to a constant. The object’s 
coordinate, then, corresponds to the point of intersection between 𝐼𝐼𝑛𝑛𝐼𝐼(𝑙𝑙) and the previously mentioned constant, 
𝑙𝑙 is the abscissa coordinate of such a point. To maximize array’s cloaking capabilities, the 𝑙𝑙 object coordinate 
must be maximized. Hence, the function 𝐼𝐼𝑛𝑛𝐼𝐼(𝑙𝑙) must be extended along the abscissa. With this, the normalized 
𝐼𝐼𝑛𝑛𝐼𝐼(𝑙𝑙) function’s rate of growth, and, therefore, the value of 𝑙𝑙𝑚𝑚𝑚𝑚𝑒𝑒, with all other parameters pre-set, is defined 
by and is proportional in direct correlation to the range value of the lens (the on-screen distance between the 
two extreme incident rays after refraction). The lens’s range in itself is dependent on the distance and the di-
verging angle of the lens. But the distance is variable, hence the diverging angle of a lens is the critical parameter 
for the cloaking criterion and, thus, cloaking capabilities of a lenticular array. If two lenticular lenses are com-
pared and their spherical aberration image may be approximated with Cauchy distribution, the one with the 
greater divergence angle will conceal an object of greater size with all other system parameters fixed. Moreover, 
we derived the formula for the divergence angle value in terms of lens parameters: 

(13)   γ =  2 ·  arcsin 

⎝

⎜
⎛𝑊𝑊𝑛𝑛

2𝑅𝑅
⎝

⎛�1 −  (
𝑑𝑑

2𝑊𝑊𝑅𝑅
)2 −

�1 − 𝑊𝑊
2𝑅𝑅

2

𝑛𝑛
⎠

⎞

⎠

⎟
⎞

 

 
where 𝑊𝑊 is the horizontal lens width in the transverse section, 𝑛𝑛 - lens material refraction index, 𝑅𝑅 - 

convex segment curvature radius. The two graphs (fig. 7) represent the dependence of the diverging angle value, 
which has been determined to be the lens effectiveness parameter, on the values of the refraction index of the 
lens and the relation between the width of the lens and the diameter of the convex segment. Hence, we concluded 
that the most capable lenticular lens in terms of optical concealment hosts a 𝜋𝜋 arc measure of the convex seg-
ment, highest admissible refraction index, and the convex segment facing the distant observer. 
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Figure 7. 

(A) - The diverging angle on the relation of width to radius theoretical dependence, γ( W
2R 

 ), with n=1.5; 

(B) - the diverging angle on the refraction coefficient theoretical dependence, γ(n), with W
2R 

= 1. 
 

Discussion 
 
In order to investigate the key hypothesis further in the study, we first developed a novel quantitative criterion 
for lenticular array cloaking in the visible regime dependent on system parameters by considering Weber’s 
contrast (9,10) as perceived by the human eye between an object’s computed virtual image through a single 
lenticular lens and the object’s background. For the purposes of computing the virtual image of an object placed 
after the lenticular array, an auxiliary hypothesis was made that the single microlens’s spherical aberration is to 
be considered the object’s virtual image as seen by a distant observer – a justifiable proposition if the lens’s 
dimensions are negligible compared to those of the object. The presented inequality (formula 10) is the decisive 
criteria for optical concealment of an object, as in itself the theoretical invisibility criteria contains a variety of 
system parameters, such as the initial contrast between the object and its background (

Bbackgr− Bobj
Bbackgr

), the dimen-

sions of the object liable to concealment, 𝑙𝑙 and  −𝑙𝑙 (the extreme coordinates of the object’s transverse section), 
the distance between the lens and the screen and the lens’s parameters contained in I(x), the computed intensity 
distribution function, as well as the value of the human eye contrast threshold 𝑀𝑀, an experimentally determined 
constant.   

Having shown that the derived criterion for cloaking adheres to the experimental results in determining 
the boundary case of optical invisibility via contrast image processing techniques, we employed the model to 
test our research’s hypothesis and show that the critical parameter for the array’s cloaking capability is indeed 
the diverging angle of an array’s lenticular lens. In turn, the value of the diverging angle specific to a lenticular 
lens positively correlates, as shown in our study, with the array’s refraction index and the lens concave seg-
ment’s curvature; therefore, a lenticular array with the most prominent cloaking capabilities consists of lenses 
with the greatest admissible index of refraction and a 𝜋𝜋 arc measure for the lens’s concave segment, as this 
grants the greatest angle of divergence. 

We must discuss the limitations of the model and, correspondingly, cloaking criterion. It is to be noted 
that in reality the virtual image of the object perceived by the observer’s eye consists of rays from multiple 
neighboring lenses. Let us consider the computed intensity distribution for three rows of lenticular lenses - the 
model can be evaluated by performing parallel transferring each of the refracted ray by the value of 2𝑊𝑊, where 
𝑊𝑊 is the lens width. The normalized 𝐼𝐼𝑛𝑛𝐼𝐼(𝐼𝐼) functions for both cases reach the maximum value of 1 at the 
corresponding 𝑟𝑟/2 coordinates (𝑟𝑟 being the range of the lens), which for a single lens and three lenses differs 
by only 2𝑊𝑊 - a value negligible enough when considering the entire range of a lens. The range for 𝐾𝐾 lenses is, 
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similarly, by (𝐾𝐾 − 1) · W. We may then compile a formula for the error of a single lens virtual image compared 
to an array: 

 

(15)  E =  �
 (k −  1)  ·  W

r +  (k −  1)  ·  W
 �   ·  100% 

 
k being the number of lenses, 𝑊𝑊 - the width of the lens and r - range. 
At H = 100cm and R=0.01cm (the radius of the lens’s convex segment) the error value is 4.3 %, 

Moreover, the function E(H), where H is the distance between the lens and the screen, is a decreasing function. 
Therefore, the difference error of a single lens simulation when compared to multiple lenses or a single lens is 
negligible enough at noticeable lens-to-screen distance for us to consider a single lens’s spherical aberration 
and intensity distribution as an accurate substitution to an array. 

In brief, our cloaking criteria may be used to predict the phenomena of practical invisibility in the 
visible regime after a lenticular lens array dependent on variable system and lens parameters, such as initial 
object-background contrast, distance, lens dimensions, and shape, as well as its optical properties. The testing 
of the key hypothesis regarding lens’s the relation between diverging properties and the array’s cloaking capa-
bilities established that a lenticular array with the most prominent cloaking capabilities consists of lenses with 
the greatest admissible index of refraction and a 𝜋𝜋 arc measure for the lens’s concave segment. 

In terms of future research, it would be beneficial to consider the effect of the observer’s position, as 
well as interlaying of multiple arrays with the goal of achieving multidirectional cloaking. Practical invisibility 
associated with lenticular arrays, though unidirectional, can find various applications in displays, photography, 
design, and architecture, as well as being employed in urban infrastructure to conceal unappealing building 
sites, office buildings, if necessary, communication lines, etc. 
 

Materials and Methods 
 
Evaluation of Experimental Data 
 
In the experiment with the boundary invisibility case (see ‘Results’) a dark equilateral triangle with a side length 
of 15 cm was placed behind an Axclear 70 LPI (ViPrint Clear Impact lens 70 Lpi) lenticular sheet (fig.1) on a 
light background (for experimental setup, see fig.8) and acted as the to-be-concealed object. A Canon EOS 
300D camera with raw format for unaltered contrast values and 1-second exposure was used to take images of 
the object as seen through the lenticular sheet in a dimly-lit room with reduced light noise. Since the triangle 
has variable width along its height, the triangle’s image through the lenticular lens was processed along the 
median of the triangle, from the top pixel and down, acquiring the mean value of image brightness for 5 pixels 
adjacent to the pixel situated on the triangle’s median dependant on triangle width in the corresponding point. 
We linearised the pixel brightness data set (fig. 8, C), and thus were able to determine the boundary case of 
invisibility by considering the contrast between the image and background as the contrast threshold value for 
the human eye, K = 0.02 (11). As it is known how the width relates to the vertical coordinate of the triangle, we 
registered the maximum width liable to optical concealment dependent on the distance between the lenticular 
sheet and the object. 
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Figure 8. 

(A)- A dark equilateral triangle with a side length of 15 cm was placed behind an Axclear 70 LPI (ViPrint 
Clear Impact lens 70 Lpi) lenticular sheet (fig.1). A Canon EOS 300D camera with raw format for unaltered 
contrast values and 1-second exposure was used to take images of the object as seen through the lenticular 
sheet in a dimly-lit room with reduced light noise. 
(B)– Image of the black triangle as seen through the lenticular sheet. 
(C)- Dependency of the brightness of the image pixel on the number of the pixel along the triangle’s me-
dian; point of contrast threshold with the background was calculated via the linearization of image bright-
ness data set 

 
Computer Simulation 
 
Wolfram Mathematica software was employed for the purposes of computing spherical lens aberration and the 
𝐼𝐼(𝑥𝑥) distribution function for the invisibility criteria and was also used to process brightness and contrast of 
images (see ‘Results’). Tracker software was employed to determine the arc shape of the lenticular lens used in 
the experiment to input it into the model. The spherical aberration model takes the system parameters (𝑅𝑅 - radius 
of curvature of the lenticular lens’s convex segment, 𝑛𝑛 - lens’s refraction index, 𝐻𝐻 - the height of the lens’s 
convex segment, 𝑊𝑊 - the horizontal width of a lenticular lens in its transverse section, 𝐷𝐷 - distance from the 
lens to the object/screen) as an input and outputs the I(x) ray distribution function needed in the theoretical 
invisibility criteria, which also considers the initial contrast between the object and its background. The lens’s 
geometrical parameters are determined by applying Tracker software to the image of the lens’s transverse sec-
tion under the microscope (fig. 1). The refraction index n is determined by applying the Fresnel equations to 
Brewster’s angle formula. These values are determined using a laser, pointed at the horizontally placed lens at 
an angle, and a piece of polarized glass detecting the reflected ray. The average refraction index value of the 
lenticular sheet used later on in experiments was n = 1.6. The result is in fact accurate considering that the 
lenticular array used in the experiments was made of PET (Polyethylene terephthalate). 
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