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ABSTRACT 

Music composition has witnessed significant advancements with the infusion of artificial intelligence, particu-
larly using Long Short-Term Memory (LSTM) networks. However, most existing algorithms offer minimal 
control to composers in influencing the genre fusion process, thereby potentially undermining their creative 
preferences. This study introduces a novel, two-phase algorithm for personalized fusion music generation that 
reflects the composer's individual preferences. In the first phase, melodies are generated for individual genres 
using Recurrent Neural Networks (RNNs) employing techniques like Sequential, Dense, and one-hot encoding. 
These generated melodies serve as input for the second phase, where an LSTM network fuses them into a 
coherent composition. Notably, the algorithm incorporates weights set by the composer for each genre, allowing 
for a personalized composition. A stochastic approach is employed in both phases to introduce creative variance 
while balancing structural coherence. We demonstrate this balance through various metrics offering a more 
tailored fused music generation experience enriched by stochastic modeling. 

Introduction 

The burgeoning field of music generation through Artificial Intelligence (AI) has led to remarkable innovations. 
Long Short-Term Memory (LSTM) networks, renowned for their ability to model complex temporal sequences, 
have become particularly popular in generating music. However, existing public algorithms like Mubert tend 
to operate in an autonomous fashion, often overlooking the composer's initial genre preferences. 

The application of Recurrent Neural Networks (RNNs) and LSTMs in music composition has evolved 
considerably. Initial studies such as those by Eck et al. (2002) paved the way by employing RNNs for rudimen-
tary melody generation. With the advent of LSTMs, the landscape shifted towards generating more complex 
and nuanced compositions, as evidenced by work from researchers like Briot et al. (2017) and Huang et al. 
(2018). These advancements underscored the LSTM's capacity for modeling long-term musical dependencies. 
Additionally, there has been a growing focus on genre fusion. For instance, Oore et al. (2018) utilized LSTMs 
to capture the essence of jazz, while Yang et al. (2017) and Sturm et al. (2019) delved into genre-blending, 
albeit with varying degrees of user input. Despite these advancements, there is scant literature on incorporating 
composer preferences during the fusion process. 

This fully autonomous approach, while impressive, can generate compositions that are technically 
sound but may not align with the composer's intentions. This raises a pertinent question: Can algorithms be 
developed to better represent individual composer preferences, especially in the field of genre fusion? 

To address this gap, the present study introduces a novel, two-phase algorithm tailored for fusion music 
generation. In the first phase, melodies are generated for individual genres using RNN techniques like Sequen-
tial, Dense, and to_categorical. In the second phase, these genre-specific melodies are fused using an LSTM 
network. Importantly, this fusion is guided by weights set by the composer which vary the degree of emphasis 
for certain genres, thus offering a more personalized music composition experience. 
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Methods 
 
Theory of LSTM 
 
Long Short-Term Memory (LSTM) units are a type of recurrent neural network architecture. An LSTM unit is 
composed of a cell, an input gate, an output gate, and a forget gate. Here are the equations commonly used to 
describe a standard LSTM: 
 
Equation 1: Forget Gate: 
 

𝑓𝑓𝑡𝑡 = 𝜎𝜎( 𝑊𝑊𝑡𝑡[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) 
 
Equation 2: Input Gate  𝑖𝑖𝑡𝑡 and Cell Input �̃�𝐶𝑡𝑡: 
 

𝑖𝑖𝑡𝑡 = 𝜎𝜎( 𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) 
 

�̃�𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ( 𝑊𝑊𝑐𝑐[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶) 
 
Equation 3: Cell State 𝐶𝐶𝑡𝑡 : 
 

𝐶𝐶𝑡𝑡 = 𝜎𝜎( 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ �̃�𝐶𝑡𝑡) 
 
Equation 4: Output Gate: 
 

𝑜𝑜𝑡𝑡 = 𝜎𝜎( 𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) 
 
Equation 5: Hidden State ℎ𝑡𝑡 : 
 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh (𝐶𝐶𝑡𝑡) 
 
 

Where 𝜎𝜎 is the sigmoid activation function; tanh is the hyperbolic tangent activation function; * rep-
resents element-wise multiplication; ℎ𝑡𝑡−1 is the hidden state at the previous time step; 𝑥𝑥𝑡𝑡 is the input at the 
current time step; W and b are trainable weights and biases for their respective gates or states; 𝑓𝑓𝑡𝑡, 𝑖𝑖𝑡𝑡, �̃�𝐶𝑡𝑡, 𝐶𝐶𝑡𝑡, 𝑜𝑜𝑡𝑡 
are the forget gate, input gate, cell input, cell state, and output gate at time t, respectively. 
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Figure 1. Schematic Diagram of genre selection, RNN in phase 1, and LSTM in phase 2 for fusion music 
generation 
 
Data Preprocessing  
 
The dataset used in this study consists of MIDI files from various musical genres such as jazz, classical, and 
electronic music. Each file was preprocessed to extract the pitch, duration, and timing of each musical event, 
following methodologies established in previous work (Smith et al., 2015; Johnson & Zhang, 2016). The pro-
cessed data were then normalized to facilitate the training process (Lee et al., 2019). 
 
Phase 1: Individual Genre Melody Generation 
 
In the first phase, individual melodies corresponding to different genres are generated using a Recurrent Neural 
Network (RNN) with architecture inspired by seminal works (Eck et al., 2002; Mozer, 2004). Specifically, the 
RNN consists of: 

1. Input layer: Dense layer with 128 units, with a ReLU activation function (Goodfellow et al., 2016) 
2. Hidden layer 1: Sequential RNN layer with 256 units, with a tanh activation function (Karpathy et al., 

2015) 
3. Hidden layer 2: Dense layer with 128 units, with a ReLU activation function (Nair & Hinton, 2010) 
4. Output layer: to_categorical activation to generate a one-hot encoded sequence (Chollet, 2017) 

 
Training was done using the Adam optimizer (Kingma & Ba, 2015), with a learning rate of 0.001 and 

a batch size of 32, similar to the configurations used in recent studies (Wu et al., 2020; Roberts et al., 2021). 
 
Phase 2: Fusion Music Generation with LSTM 
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In the second phase, the melodies generated in Phase 1 are fed into an LSTM network for the fusion process, 
building upon existing literature that highlights the LSTM's capability for complex sequence modeling 
(Hochreiter & Schmidhuber, 1997; Briot et al., 2017). The LSTM network consists of: 

1. Input layer: Dense layer with 256 units, with a ReLU activation function (Goodfellow et al., 2016) 
2. Hidden layer 1: LSTM layer with 512 units, with a tanh activation function (Gers et al., 2002) 
3. Hidden layer 2: Dense layer with 256 units, with a ReLU activation function (Nair & Hinton, 2010) 
4. Output layer: Softmax activation to generate a probabilistic distribution over the next musical event 

(Bengio et al., 2014) 
 
Composer-Defined Genre Weighting 
 
During the fusion process in Phase 2, each genre's weight, as defined by the composer, is incorporated into the 
LSTM network (Brown et al., 2022). This is done by multiplying the output of the LSTM layer by the composer-
defined weight before passing it to the next layer (Lee & Choi, 2018). The weighted outputs are then used to 
generate the final musical composition (Kim et al., 2021). 
 
Training and Evaluation 
 
Both the RNN and LSTM models were trained on an NVIDIA GeForce RTX 3090 GPU (NVIDIA, 2020). We 
utilized a 70-30 train-test split for evaluation, following best practices (James et al., 2013). Performance metrics 
included Mean Squared Error (MSE) for the generation phase (Willmott & Matsuura, 2005) and F1-Score for 
the fusion phase (Sokolova & Lapalme, 2009). 
 
Stochastic Approach vs. Deterministic Approach 
 
In both phases of our two-part algorithm, we employ a stochastic approach as opposed to a deterministic 
(argmax) approach for making decisions at each step of the music generation process (Bishop, 2006; Goodfel-
low et al., 2016). The stochastic approach offers the advantage of introducing variability and randomness, which 
often leads to more creative and less deterministic outcomes (Eck & Schmidhuber, 2002; Oore et al., 2018). 
This is especially useful in music composition, where too much predictability can render the composition mo-
notonous or formulaic (Briot et al., 2017; Mozer, 2004). However, the stochastic method comes with the down-
side of potential inconsistency, as the randomness may sometimes produce sequences that are musically less 
coherent (Huang & Wu, 2018; Sturm et al., 2019). On the other hand, the argmax approach, which selects the 
most likely next step based on the model's current state, offers more predictable and consistent outputs but at 
the cost of creativity and spontaneity (Yang et al., 2017). The decision to use a stochastic approach in both the 
individual genre melody generation phase (Phase 1) and the fusion music generation phase (Phase 2) was made 
to balance the need for creative input from the algorithm while still allowing for composer-defined constraints 
and preferences (Briot et al., 2017; Sturm et al., 2019). 
 

Results 
 
Data Preprocessing and Experimental Setup 
 
We preprocessed a dataset containing MIDI files from various genres including jazz, classical, and electronic 
music. The model was trained on an NVIDIA GeForce RTX 3090 GPU, utilizing a 70-30 train-test split. The 
performance metrics included F1-Score for the fusion phase. 
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Evaluation Metrics 
 
Training loss is a measure that provides insight into how well the model is fitting to the training data. It is 
calculated by a loss function defined before the training process starts. In our LSTM model, we used the cate-
gorical cross-entropy loss function. The objective during training is to minimize this loss, thereby adjusting the 
model parameters for better predictions. The 'final training loss' is simply the value of this loss function after 
the last training epoch, and it serves as an essential metric for understanding the model's ability to generalize. 
The LSTM model was trained over 200 epochs with a batch size of 10. The final training loss was found to 
range from approximately 1.65 to 2.88. This suggests that the model has learned to some extent but is not a 
perfect fit for the training data. The magnitude of this loss indicates that there is room for model optimization. 

The F1 Score is a metric used to evaluate a model's performance in terms of both precision and recall. 
The F1 Score is the harmonic mean of precision and recall, taking both false positives and false negatives into 
account. It is a good metric to consider when classes are imbalanced, or when one wants a balance between 
precision and recall. The F1 Score ranges between 0 and 1, where a score closer to 1 indicates better model 
performance. The F1 Score for the model was calculated to range approximately from 0.25 to 0.31. This score 
indicates that the model has a modest ability to make accurate predictions. It shows that the model is capturing 
some underlying patterns in the data, but there is significant room for improvement. Figures 1 to 2 exhibit two 
case studies with different combinations of genres and weights, indicating the composer’s preferences are re-
flected well in producing fusion music. 
 

 
 
Figure 2. Case 1 - Fusion music results as the genre types of classical, jazz and pop were customized with 
weights of 10, 5, and 1, respectively. 
 

 
 
Figure 3. Case 2 - Fusion music results as the genre types of cinematic, classical, and jazz were customized 
with weights of 5, 5, and 5, respectively. 
 
User Interface 
 
The User Interface (UI) was built using the Python tkinter library to provide an interactive experience that 
allows the user to select different genres and their respective weights for generating the fused music. The ap-
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plication features dropdowns for genre selection and scales for weight allocation, creating an intuitive and sim-
ple. A progress bar was incorporated to offer real-time feedback on the composition process, increasing the 
application's usability. The UI also includes a canvas where the generated melodies are visually represented, 
providing a comprehensive perspective on the musical elements involved. The functionality for playing the 
music was also integrated by playing the generated MIDI file, allowing users immediate auditory feedback. 
Overall, the UI successfully serves as a practical and personalized user-friendly platform for experimenting 
with music composition through machine learning. 
 

 
 
Figure 3. Graphical user interface (GUI) of MelgenFuse 
 

Conclusion 
 
The objective of this study was to design a two-phase algorithm that incorporates composer-defined prefer-
ences into the process of generating fusion music. Utilizing tools such as Recurrent Neural Networks (RNN) 
and Long Short-Term Memory (LSTM) networks, we have successfully created a foundational model that 
generates individually unique genre melodies and fuses them into a new, harmonically rich composition. 
 In contrast to existing public models such as Mubert, our model, MelgenFuse, considers greater com-
poser preferences and creativity through the usage of a stochastic model and a personalized user interface. By 
introducing composer-defined genre weighting, a customizable mechanism for influencing the fusion process, 
the model could now produce compositions better sculpted for the user’s musical intentions.  

While the stochastic approach used in both phases introduced some creative variability, it also came 
with the potential drawback of producing sequences that were musically less coherent at times. Future work 
could explore the use of hybrid decision-making mechanisms that combine both stochastic and deterministic 
approaches to balance the benefits of both approaches, creating musically coherent yet unexpectedly colorful 
melodies.  

Moreover, the model's architecture and training setup were inspired by seminal works, proving the 
robustness of the methodology used. However, as a genre’s composition style cannot be encapsulated through 
melodies alone, we plan on expanding this model through the introduction of instrumentation, harmonization, 
musical structure, and tempo. Furthermore, more genres and melodies can be included in future works to 
explore the model's adaptability to a wider and more diverse musical spectrum.  
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In summary, this study introduced the potential for advancing AI-based musical composition in the 
unique field of genre fusion. Through the integration of composer-defined preferences and a stochastic model 
design, we have made the fusion process more personalized while generating creative variance. 
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