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ABSTRACT 

Missing values in remotely sensed satellite data present a significant challenge for accurate analysis and inter-
pretation of environmental data. Factors such as dead pixel values or cloud coverage can lead to significant 
gaps in datasets, degrading its overall quality and value. Tensor completion utilizes high-dimensional arrays 
known as tensors and their low-rank decompositions to recover missing values. This paper demonstrates the 
application and value of applying Tensor Completion to enhance remotely sensed Nitrogen-Dioxide satellite 
data and proposes an algorithm for its use. An efficient and accurate recovery method is proposed by leveraging 
relationships within the tensor and by employing suitable tensor decomposition methods. The proposed algo-
rithm will enhance the analysis, interpretation, and utilization of satellite data. The algorithm is validated on 
real-world satellite datasets and its superiority demonstrated against existing alternate data recovery methods 
such as IDW and Kriging. 

Introduction 

Air pollution is one of the most significant health and environmental issues of our time. Extensive studies have 
demonstrated the adverse effects of air pollution on respiratory and cardiovascular health, leading to increased 
mortality rates. Moreover, the emission of greenhouse gasses, pollutants, and other particulate matter exacerbate 
climate change, emphasizing the urgency to address air pollution as a pressing global concern [1, 2]. 

Among the many pollutants contributing to this issue, Nitrogen Dioxide (NO2) holds significance due 
to its severe impact on respiratory health, with studies linking it to degenerative conditions such as lung cancer 
[3]. While not itself a greenhouse gas, it is considered a precursor to formation of other greenhouse gasses such 
as tropospheric ozone. For these reasons, NO2 data is highly valued for environmental research. 

While land-based instruments exist to measure NO2, these are often concentrated in urban areas (and 
resultantly sparse in rural areas). Since satellites cover much larger swathes of land and ocean, remote sensing 
data sets are preferred for use in analysis and environmental studies [4]. 

Measured satellite data can be visualized to be stored in high-dimensional arrays, also known as ten-
sors. However, satellite data is often non-uniform and incomplete due to missing values and can therefore be 
difficult to analyze. This can be due to a variety of reasons, such as the satellite being offline or cloud coverage 
interfering with its sensors [5]. This non-uniformity complicates data analysis and necessitates the use of so-
phisticated imputation techniques, increasing complexity and potentially introducing further uncertainty. For 
these reasons, methods to recover missing values are preferred. This research focuses on recovery of NO2 data 
from the Sentinel-5P satellite. 

Tensor completion is one of many methods to recover missing values. At its core, tensor completion 
exploits underlying relationships in the data to infer missing data point values. The more relationships in the 
data (i.e., the lower rank a tensor is), the better tensor completion works. Tensor Completion has previously 
been explored in areas such as computer vision and random graphs [6, 7]. It was proven that exact reconstruction 
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of a tensor is possible with only minimal data from the original tensor. Additionally, Tensor Completion has 
been successfully used in remote sensing to reconstruct Landsat images that were previously obscured by 
clouds, Tensor Completion showed better results than several state-of-the-art algorithms [5]. 

Despite being a powerful tool, tensor completion’s application in the context of NO2 data has been 
unexplored. This paper aims to address this research gap by introducing a tensor completion algorithm using 
CP (CANDECOMP/PARAFAC) Decomposition specifically designed for NO2 data from the Sentinel-5P sat-
ellite. This algorithm seeks to improve the quality of the recovered data, decrease the complexity of data pro-
cessing, and reduce uncertainty in the analysis, thereby advancing several environmental research methods. By 
evaluating the algorithm using several evaluation metrics, one can demonstrate its effectiveness and potential 
as a robust tool for environmental researchers and policymakers alike. This work attempts to contribute to 
ongoing efforts to mitigate air pollution and its effects on health and the climate. 
 

Data and Methodology 
 
Data Overview 
 
The Sentinel-5P NO2 data [8, 9] in this study is stored in a high-dimensional array, commonly known as a 
tensor. At a high level, tensors are a mathematical representation of data with multiple dimensions. Tensors can 
have an arbitrary number of dimensions, making them versatile. An important characteristic of all tensors is 
their order, which represents the number of dimensions a tensor has. This work uses a 3rd order tensor: two 
spatial dimensions (longitude and latitude), and one temporal dimension.  

Since the complete dataset covers the entire world, and processing it would be extremely time inten-
sive, the dataset was restricted to United States only, as shown below in Figure 1, and to the time period between 
Jan 1, 2019 and Jan 5, 2019. 
 

 
 
Figure 1. Measured NO2 data across the United States. Retained values are displayed in varying shades of blue. 
Missing values are shown in black. 
 
CP-Decomposition 
 
Tensor Decomposition is a key part of Tensor Completion and breaks up a high-order tensor into several low-
rank factors. The CP (CANDECOMP/PARAFAC) Decomposition technique decomposes a higher-order tensor 
into several rank-1 tensors. Each rank-1 tensor is significantly smaller than the original tensor, reducing its 
memory requirement and processing complexity, while still retaining most of the patterns from the original 
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higher-rank tensor [10, 11, 12].  Figure 2 illustrates the process of decomposing the original tensor into several 
rank-1 tensors/factors.  
 

 
 
Figure 2. CP-Decomposition: A high rank tensor is decomposed into several rank-1 tensors, or factors. The 
more factors that original data is decomposed into, the better the representation [10]. 
 
Tensor Completion Explanation 
 
Tensor Completion leverages inherent relationships in the data to fill in missing entries in a tensor and involves 
several key steps. An Alternating Least Squares (ALS) approach for Tensor Completion has been shown to be 
efficient, as detailed in papers such as [13].  

1. The algorithm begins with an input tensor with missing values (PΩ(T)). The indices of missing values 
(Ω) rank (r), and iterations (τ) are provided. 

2. Several vectors (u0
1, 𝝈𝝈1, etc.) are initialized to starting estimates of the tensor’s components. The vec-

tors are generated through the Robust Tensor Power Method (RTPM) and provide an efficient starting 
point for the algorithm. 

3. A nested for loop is then implemented, where the inner loop cycles through each factor (the number 
of factors represented by (represented by r), and the outer loop represents multiple complete passes 
through every factor (represented by τ). 

4. Within the inner loop, the squared difference (arg min) between the observed and estimated tensor 
(excluding the current component q) is minimized, as shown in Equation 1.  

5. After the estimate is normalized, every updated component is collected into a new tensor. Finally, the 
outer product of the final estimates form a completed tensor. 

 
Step 4 is especially important. By iterating through one factor at a time, and not updating any other 

components, the step can be reduced to a simple least squares minimization problem. Additionally, since the 
original tensor, missing values, and number of factors remain constant, this can be further reduced to a convex 
optimization problem, greatly easing the complexity.  

Equation 1: The minimization algorithm used in Step 4 is shown below. Tensor PΩ(T) subtracts con-
structed tensor PΩ(𝑇𝑇�) and the result is minimized to optimize the completion algorithm. 
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minimize
𝑇𝑇,�  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑇𝑇�)=𝑟𝑟

�𝑃𝑃Ω(𝑇𝑇) − 𝑃𝑃Ω(𝑇𝑇�)�
𝐹𝐹
2
 

 
Experimental Setup 
 
The Tensor Completion algorithm is applied to remotely sensed NO2 data from the Sentinel-5P satellite.  

The original dataset contained ~15% missing values. To ensure a source of ground truth while evalu-
ating the performance of algorithm, an additional ~25% of values were intentionally removed from the dataset 
as shown in Figure 3. This is done for the purpose of evaluating the performance of the model against a known 
ground truth. Comparing the original values to the completed/predicted values can provide a better understand-
ing of the model’s performance. This performance comparison is shown in Table 1 for a subset of ranks. 

The work was implemented using Python library TensorLearn [14] due to its ease of access and usa-
bility. Several CP-Decomposition and Tensor Completion methods were used to recover the missing values. 
 

 
 
Figure 3. ~25% missing data was artificially introduced into the satellite data set. 
 
Table 1. Tensor Completion Performance metrics versus rank. Intermediate ranks show the best correlation. 
 

Rank R2 RMSE R 
10 0.671 0.035 0.852 
20 0.753 0.031 0.899 
30 0.785 0.029 0.917 
40 0.798 0.028 0.923 
50 0.804 0.027 0.927 
60 0.807 0.027 0.930 
70 0.806 0.027 0.930 
80 0.803 0.027 0.929 
90 0.793 0.028 0.924 

100 0.777 0.029 0.916 
 

Results and Discussion 
 
Statistical Analysis 
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When running tensor completion on the Sentinel-5P dataset, various variables were varied - including rank, 
iterations, and the percentage of missing values added to the data. In this case, rank refers to the complexity of 
CP-Decomposition performed on the original tensor. A higher rank means that the algorithm better fit the fac-
tors to the original data. R2, Root Mean Squared Error (RMSE), and Correlation Coefficient (R) were calculated 
using the ground truth. The results are displayed in Table 1.   

The trends show a clear increase in R2 and R with rank, while RMSE decreases with rank. However, 
at higher ranks (close to 90-100), the model begins to taper off, and worsen in performance. For example, the 
R2 at a rank of 100 is 0.03 worse than a rank of 80. This trend is also seen in the other metrics. This is likely 
due to the model becoming overfit on the original data, and therefore not reconstructing the tensor correctly. 
These statistical trends are visualized in Figure 4, where it can be clearly seen that the performance starts to 
taper (worsens) at higher ranks.  
 

 
 
Figure 4. R2, R, and RMSE performance vs Rank. Degradation of performance at higher ranks >80 is observed 
 
Comparison to Existing Methods 
 
Tensor completion using CP-Decomposition is compared to a variety of existing methods. The two most pop-
ular methods to retrieve missing values are Inverse Distance-Weighted Interpolation (IDW) and Kriging.  
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IDW and Kriging work on similar principles. IDW takes the n-nearest filled in data points and uses 
them to compute a missing value. The “Inverse” in IDW is due to the way IDW weights data points: closer data 
points are weighted higher. Kriging works on a similar principle, except it incorporates spatial geographical 
relationships to estimate the missing value (rather than simply choosing the n-nearest points). It then forms a 
variogram and models spatial correlation in the data. The improved accuracy is achieved, but it is accompanied 
with larger computational complexity. Both IDW and Kriging methods are widely used in the field of geo-
graphical data analysis. 

Table 2 shows the performance of Tensor Completion at an optimal rank of 80 is compared benchmark 
techniques IDW and Kriging [15, 16, 17, 18]. In terms of performance metrics, Kriging improves R2, R and 
Residual error over IDW at the cost of increased O(n3) complexity (i.e. increased processing time and re-
sources). Tensor Completion maintains many of the advantages of performance delivered by Kriging, but main-
tains a O(n) complexity – i.e. it has a much faster processing time for very large datasets. Tensor Completion 
has a slightly degraded RMSE when compared to Kriging benchmark, but it is still significantly better than 
IDW benchmark, and still very low.  

 
Table 2. Tensor Completion Performance metrics compared to IDW and Kriging at optimal rank 80. 
 

 IDW [15, 16, 17] 
(academic benchmark) 

Kriging [18] 
(academic benchmark) 

Tensor Completion 
(this paper, Sentinel-5P 
) 

Time Complexity 
n = # of samples 

O(n) O(n3) O(n) 

Degree of Fit, R2 0.30~0.40 0.61~0.7 0.80 

Degree of Fit, R ~ 0.85~0.95 0.92 

Residual Error, RMSE 1.22~0.9 0.05~0.01 0.025 

 

Conclusion 
 
In this paper, Tensor Completion algorithm was successfully applied to remotely sensed Nitrogen-Dioxide data 
from the Sentinel-5P satellite. Missing values were introduced artificially, the data was then normalized, and 
existing patterns were assessed to fine tune the model’s performance.  

Tensor Completion was shown to be extremely promising, and its performance was shown to be equal 
or better than existing interpolation techniques. It can be a strong tool for researchers to retrieve missing values 
in many satellite datasets and has the potential to bring significant benefits to climate change research.  
 

Limitations and Future Work 
 
While this paper makes significant contribution to the research, there are some limitations and areas of further 
work and improvements are identified.  

One limitation of the work is that the artificial missing data was randomly removed from the satellite 
dataset. A different method of removing data – such as to simulate cloud cover, can offer additional insight to 
the performance of the different data recovery methods.  

Tensor Completion relies on “low rank” of a dataset to exploit patterns and dependencies in it. Its 
performance (vs IDW and Kriging) can therefore vary depending on the rank of the target data set.  
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One future work project can involve running IDW and Kriging on the Sentinel-5P dataset as well so 
that a more direct performance comparison to Tensor Completion can be made – instead of relying existing 
research benchmarks for IDW and Kriging. Due to their very high complexity of implementation O(n3) of these 
algorithms, this is unfortunately expected to be extremely time and processing power intensive.  

An additional future work can implement other Tensor Decomposition methods for the Tensor Com-
pletion. CP-Decomposition was successfully implemented in this paper, but other methods such as Tucker and 
Tensor-Train Decomposition can be evaluated for potential additional improvements as well. 
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