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ABSTRACT 

This work aims to understand a dog’s behavior towards environmental stimuli. Different from previous works, 
we collect multi-modality data including both video and audio data observed from the dog’s egocentric per-
spective. We propose to model the association between a dog’s reaction and the visual and auditory stimuli 
perceived by the dog using machine learning, in particular through an extended Convolutional Neural Network 
(eCNN). The eCNN model takes colored images, Short Time Fourier Transform (STFT) of audio, and motion 
fields extracted from image sequences as input, and outputs a prediction of the dog’s reaction, classified as Sit, 
Stand, Walk, or Smell. Our proposed model achieves promising prediction results, with an average accuracy of 
79.02% over all four classes. We also evaluate model performance by separately using one of image, audio, 
and motion information. Our results show that the dog responds strongly to low-frequency sounds and various 
color differences in its field of view. These research findings provide valuable insights to understanding animal 
behavior and intelligence as well as insights for building robotic companion dogs. 

Introduction 

Artificial intelligence (AI) has undergone rapid development in the past decade and revolutionized the way 
people live. Since current AI technologies rely on large amounts of data, they are prone to mistakes that may 
seem trivial to humans. For example, self-driving cars may misrecognize obstacles on the road, leading to fatal 
accidents. In contrast, animals such as dogs can easily avoid unfamiliar objects in their path. A better under-
standing of natural intelligence is critical to advancing the next generation of AI. In this work, we are interested 
in studying how a dog behaves and reacts to different stimuli in its surroundings. Understanding dog behavior 
could provide useful insights in understanding animal intelligence as well as human intelligence.  

Like humans, dogs have five senses: sight, hearing, smell, touch, and taste. Their sense of hearing and 
sense of smell are much more powerful than humans. They have a wider angle of vision than humans, but 
cannot always see objects in focus. Studies have shown that domestic dogs perform similarly to human infants 
in cooperative communicative tasks (MacLean et al. 2017). They are capable of expressing emotions such as 
happiness, anger, fear, and jealousy, and experiencing depression and anxiety like humans (Marks et al. 2022). 
Understanding dog behavior can help maintain a dog’s health and well-being. In addition, it can help create 
effective ways of training dogs for various services, especially when it is done from a dog’s perspective rather 
than a human trainer’s perspective.  

Previous work on dog behavior has been reported in literature. Gregory Berns et al. (2012) studied 
dogs’ brain activity in response to human hand signals using fMRI scans. They showed that dogs tend to pay 
close attention to human signals and display significant brain activity when seeing familiar hand signals for 
rewards. Several research groups used cameras and wearable devices to recognize a dog’s posture and move-
ments for health monitoring (Mealin et al. 2016, Kim & Moon 2022, Hussain et al. 2022, Atif et al. 2023). 
Robinson et al. (2015) studied the behavior of companion dogs in emergency situations for the purpose of 
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developing assistive technology. Other studies used videos and pictures of dogs’ full body postures and facial 
expressions to predict their emotional states (Boneh-Shitrit et al. 2022, Ferres et al. 2022). Most existing work 
used a monitoring setup from a human perspective. In contrast, a recent study by Ehsani et al. (2018) used an 
egocentric setup. They analyzed how a dog acts and plans her movements in response to visual information 
perceived by the dog. Their machine learning model was able to predict walkable paths in the dog’s environ-
ment, as a first step towards building robotic companion dogs. 

In this work, we use an egocentric setup to study a dog’s reaction to multi-modality stimuli, including 
visual and auditory stimuli, in its environment. Unlike most studies that capture images or videos of the dog 
from a human perspective, our setup captures video and audio stimuli in the environment from the dog’s per-
spective. In addition, we expand the work of Ehsani et al. (2018) and introduce auditory stimuli into our study. 
We collect video and audio data from a dog’s egocentric view and create a database of egocentric visual and 
audio stimuli that represents what a dog sees and hears. We propose an extended Convolutional Neural Network 
(eCNN) model to learn the association between the dog’s reaction and the visual and auditory stimuli jointly 
perceived by the dog.  
 

 
 
Figure 1. Data collection. In (1a), a camera with a microphone is mounted on the dog harness to capture video 
and audio from the dog’s perspective. In (1b), a hand-held camera captures videos of dog movements from the 
human’s view. 
 

Methodology 
 
We design a data collection system with one hand-held camera capturing the dog’s movements, and a camera 
with a microphone mounted on the dog’s harness capturing video and audio data the dog senses from the envi-
ronment. Video and audio data are jointly analyzed by a machine learning model to learn the association be-
tween the dog’s reaction and the visual and auditory stimuli sensed by the dog. 
 
Data Collection 
 
Data collection focuses on collecting the visual and audio stimuli in the dog’s environment. A family pet, a 
Golden Retriever, is brought to different environments including parks and neighborhood streets. As Figure 1 
shows, a GoPro camera is attached to the harness that the dog wears to capture what the dog sees and hears 
(Fig. 1(a)). The video stream captured by this GoPro camera is referred to as the dog-view video. At the same 
time, a hand-held camera is used by a person to record the dog’s movements and its surroundings. The video 
stream captured by the hand-held camera is referred to as the human-view video. When recording the videos, 
both cameras are turned on at roughly the same time. An audible start signal, e.g. “take one”, is used to syn-
chronize the recordings made by the two cameras. A total of 22 pairs of videos have been collected.  
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Data Preparation 
 
Three types of data, image frames, audio signals, and dog actions, are extracted from the dog-view and human-
view videos. Image information is extracted from the dog-view videos. When the dog is walking or running, 
the dog-view camera may record extra noise from the leash. Therefore, we use audio signals extracted from the 
hand-held camera for its better audio quality to replace audio signals from the dog-view camera. Dog actions 
are manually labeled using the images from the human-view videos. 

 
 
Figure 2. Audio signals, dog view images, and human view images are aligned by time. 
 

To establish the correspondence between the dog’s actions and its visual and audio stimuli, we estab-
lish the time correspondence between the image frames from the dog’s view and the image frames from the 
human’s view. Assume 𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐻𝐻 are the frame rates (i.e. frames per second) of the dog-view camera 
and the human-view camera respectively. Assume 𝑇𝑇𝐷𝐷0 and 𝑇𝑇𝐻𝐻0 are the start times when the start signals of the 
dog-view camera and the human-view camera respectively. Given the dog-view image frame 𝑓𝑓𝑓𝑓𝐷𝐷, the corre-
sponding human-view image frame 𝑓𝑓𝑓𝑓𝐻𝐻 is 
 

𝑓𝑓𝑓𝑓𝐻𝐻 = �
𝑓𝑓𝑓𝑓𝐷𝐷
𝐹𝐹𝐹𝐹𝐹𝐹𝐷𝐷

− 𝑇𝑇𝐷𝐷0 + 𝑇𝑇𝐻𝐻0� ∙ 𝐹𝐹𝐹𝐹𝐹𝐹𝐻𝐻 

 
Once the correspondence between the dog-view and human-view image frames are established, the 

correspondence between the dog’s actions and the visual and audio stimuli is known. 
As Figure 3 shows, there are 4 types of actions defined: Sit, Stand, Walk, and Smell. When the dog 

starts an action, the dog tends to continue the action for a period of time. Therefore, the image frames are only 
labeled when the dog changes its actions, and the same action is assigned to the subsequent image frames until 
a new action is presented. 
 

 
 
Figure 3. Images showing 4 actions of the dog: Sit, Stand, Walk, and Smell. 
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Data Analysis 
 
Given the visual and audio stimuli a dog senses and its corresponding actions, we want to understand how the 
dog reacts to what it sees and hears. For example, what makes a sitting dog start walking? We propose an 
extended Convolutional Neural Network (eCNN) to learn the association between visual and audio stimuli and 
the corresponding dog actions. Compared to the CNN model, which only takes images as input variables, the 
eCNN model is able to explore data from multiple modalities, including images, motion, and audio. Our prob-
lem is formulated as a multi-class classification problem, where we use image, audio, and motion information 
to classify the dog’s action into one of 4 classes: Sit, Stand, Walk, and Smell, shown in Figure 3. 
 
Input Features 
Image frames of size 672x378 pixels are extracted from the dog-view videos to capture what the dog sees. Each 
image is composed of three color channels: red, green, and blue. For faster computation, all image frames are 
resized to 151x85 pixels without losing useful visual information. The frame rate of the dog-view camera is 
30.05 frames per second (FPS) and consecutive image frames are highly similar. Therefore, we perform down 
sampling over time and select one in every 5 frames to include in the dataset. 
 

 
 
Figure 4. Sample images captured by the dog-view camera in the dataset. 
 

The audio signals extracted from the human-view videos capture what the dog hears. We want to 
analyze the frequency content of the audio signal. Short-Time Fourier Transform (STFT) is used to decompose 
the audio signal into individual frequency components. STFT is defined as 
 

𝑆𝑆(𝑚𝑚,𝜔𝜔) = � 𝑥𝑥(𝑛𝑛)𝑤𝑤(𝑛𝑛 − 𝑚𝑚𝑚𝑚)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖
∞

𝑛𝑛=−∞

 

 
𝑥𝑥(𝑛𝑛) represents the audio signal at time 𝑛𝑛, 𝑚𝑚 is the index of the moving window, 𝐻𝐻 is the hop length, 

𝑤𝑤(𝑛𝑛) is the windowing function, and 𝜔𝜔 is the frequency. Since the STFT 𝑆𝑆(𝑚𝑚,𝜔𝜔) is a complex function, we 
take the magnitude |𝑆𝑆(𝑚𝑚,𝜔𝜔)| as the input feature to the eCNN model. Figure 4 shows an example spectrogram 
of an audio signal produced by STFT. 

In our experiment, we use the hop length of 1/90th second and a window size of 1 second. Figure 5 
shows the resulting spectrogram (right) of a recorded audio signal (left) produced by STFT. 
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Figure 5. Spectrogram of audio signal produced by STFT. (Left: audio signal; Right: spectrogram) 
 

To capture the sequential nature of the visual data, we included motion information as the third type 
of input feature. To compute image motion, we use the template matching method (Gonzalez & Woods 1992) 
to estimate the motion vectors of image blocks, i.e. how an image block moves from one frame to the next. 
Define 𝐼𝐼𝑡𝑡 as the image frame at time 𝑡𝑡. As Figure 6 shows, for an image block centered around pixel (𝑥𝑥0, 𝑦𝑦0), 
template matching finds the new block location (𝑥𝑥0 + 𝑚𝑚𝑚𝑚, 𝑦𝑦0 + 𝑚𝑚𝑚𝑚) in the next image frame 𝐼𝐼𝑡𝑡+1 such that the 
difference between the two image blocks measured by sum of squared error is minimized. A motion vector 
𝑚𝑚𝑚𝑚(𝑥𝑥0, 𝑦𝑦0) = (𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑) is found as 
 

(𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘={−𝐷𝐷,…𝐷𝐷}
𝑘𝑘𝑘𝑘=(−𝐷𝐷,…𝐷𝐷}

 �𝐼𝐼𝑡𝑡+1(𝑥𝑥0 + 𝑖𝑖 + 𝑘𝑘𝑘𝑘, 𝑦𝑦0 + 𝑗𝑗 + 𝑘𝑘𝑘𝑘) − 𝐼𝐼𝑡𝑡(𝑥𝑥0 + 𝑖𝑖, 𝑦𝑦0 + 𝑗𝑗)
𝑖𝑖,𝑗𝑗

 

 

 
 
Figure 6. Motion vector of an image block. 
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Figure 7. Image pyramid with 3 levels. 
 

To make the method more computationally efficient, we first construct image pyramids, sequences of 
resized images at different resolutions {𝐼𝐼𝑡𝑡𝑙𝑙: 𝑙𝑙 = 0, 1, … , 𝐿𝐿 − 1} (Figure 7) with a scaling factor 2. Template 
matching is first performed on the lowest resolution image. Assume at level 𝑙𝑙 a motion vector (𝑑𝑑𝑑𝑑𝑙𝑙, 𝑑𝑑𝑑𝑑𝑙𝑙) is 
found for an image block centered around pixel (𝑥𝑥0, 𝑦𝑦0). Then the motion vector at level 𝑙𝑙 − 1, (𝑑𝑑𝑑𝑑𝑙𝑙−1, 𝑑𝑑𝑑𝑑𝑙𝑙−1), 
at pixel location (2𝑥𝑥0, 2𝑦𝑦0) is found as 
 
(𝑑𝑑𝑑𝑑𝑙𝑙−1, 𝑑𝑑𝑑𝑑𝑙𝑙−1) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘=�2𝑑𝑑𝑑𝑑𝑙𝑙−𝐷𝐷,…,2𝑑𝑑𝑑𝑑𝑙𝑙+𝐷𝐷�

𝑘𝑘𝑘𝑘={2𝑑𝑑𝑑𝑑𝑙𝑙−𝐷𝐷,…,2𝑑𝑑𝑑𝑑𝑙𝑙+𝐷𝐷}

 �𝐼𝐼𝑡𝑡+1(2𝑥𝑥0 + 𝑖𝑖 + 𝑘𝑘𝑘𝑘, 2𝑦𝑦0 + 𝑗𝑗 + 𝑘𝑘𝑘𝑘) − 𝐼𝐼𝑡𝑡(2𝑥𝑥0 + 𝑖𝑖, 2𝑦𝑦0 + 𝑗𝑗)
𝑖𝑖,𝑗𝑗

 

 
In general, image motion can be caused by both camera movements and objects moving in the scene. 

Since we are interested in object motion, we want to remove the motion caused by camera movements. We use 
the global average of motion vectors to represent the motion caused by camera movements and subtract the 
global motion from the motion vectors: 

𝑚𝑚𝑚𝑚����(𝑥𝑥, 𝑦𝑦) = �𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦) − 𝑑𝑑𝑑𝑑𝑔𝑔, 𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦) − 𝑑𝑑𝑑𝑑𝑔𝑔�  

𝑑𝑑𝑑𝑑𝑔𝑔 =
1
𝑁𝑁
�𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦),   
𝑥𝑥,𝑦𝑦

𝑑𝑑𝑑𝑑𝑔𝑔 =
1
𝑁𝑁
�𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦) 
𝑥𝑥,𝑦𝑦

 

 
In our experiment, we construct image pyramids with 4 levels. Image blocks of 5x5 pixels are used in 

template matching. For computational efficiency, centers of image blocks are 32 pixels apart in the original 
resolution. A resulting motion field is shown in Figure 8.  
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Figure 8. Motion field. 
 
Extended Convolutional Neural Network (eCNN) 
 

 
 
Figure 9. Extended Convolutional Neural Network (eCNN) model. 
 
To utilize images, motion, and audio, we propose an extended CNN (eCNN) model to take multi-modality data 
as input, as shown in Figure 9. In the eCNN model, the first input type is an image. The image goes through a 
convolution layer, which is composed of 32 filters with kernel size 7x7 and stride 1. Batch normalization is 
then applied to the convolved image over the color channels, and a max pooling operation with a pool size of 
3x3 is performed. The resulting output is flattened and fed into the input layer of the eCNN model. The second 
input type is a motion field. The magnitudes of the motion vectors go through a max pooling layer with a pool 
size of 9x3 before they are fed into the input layer. The third input type is an audio signal. First we apply STFT 
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to the audio signal to get a vector of the frequency domain representation. Batch normalization is performed on 
its magnitude spectrum and the resulting output is fed into the input layer. The input layer feeds the three types 
of input data into a dense hidden layer with 30 nodes and a sigmoid activation function. The dense layer is 
connected to an output layer of 4 nodes with a softmax activation function, corresponding to the one-hot en-
coding of each of the 4 classes: Sit, Stand, Walk, and Smell. TensorFlow Keras is used to implement the eCNN. 
The Adam algorithm is selected for optimization. We use a dropout of 20% on the input and output of the dense 
layer to reduce overfitting. 
 
Train and Test 
The dataset of images, motion, audio, and ground truth labels are randomly split into training, validation, and 
testing sets. 70% of the data which includes 3505 samples are used for training. 10% of the data which includes 
458 samples are used for validation. The remaining 20% of the data which includes 954 samples are used for 
testing. When training the eCNN model, to prevent the optimization algorithm from getting stuck in local min-
ima, we adopt mini-batches at two levels. First, the training samples are divided into a number of batches, 
referred to as “hyper-batches”. Second, when each hyper-batch is used for training, mini-batches within the 
hyper-batch are used for optimization in TensorFlow. Similarly, training is run over epochs at two levels. First, 
when each hyper-batch is used for training, TensorFlow runs optimization over multiple epochs. Second, we 
run training on all hyper-batches over multiple hyper-epochs. Model performance over the number of hyper-
batches and hyper-epochs is evaluated.  

To evaluate the model’s performance, we computed the overall prediction accuracy as well as a con-
fusion matrix to assess the prediction accuracy in each class. We use {(𝑥𝑥1, 𝑦𝑦1), (𝑥𝑥2, 𝑦𝑦2), … , (𝑥𝑥𝑁𝑁, 𝑦𝑦𝑁𝑁)} to repre-
sent the set of data samples, where 𝑥𝑥𝑖𝑖 is the input feature and 𝑦𝑦𝑖𝑖 is the ground truth class label, i.e. 𝑦𝑦𝑖𝑖 ∈
{𝑠𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠}. We use 𝑦𝑦�𝑖𝑖 to represent the predicted class label for input 𝑥𝑥𝑖𝑖. The accuracy of class 
𝐶𝐶 (𝐶𝐶 = 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) is computed as 
 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶) =
|{𝑖𝑖: 𝑦𝑦𝑖𝑖 = 𝐶𝐶, 𝑦𝑦�𝑖𝑖 = 𝐶𝐶}|

|{𝑖𝑖: 𝑦𝑦𝑖𝑖 = 𝐶𝐶}|
 

 
|S| represents the number of samples (cardinality) of set S. The overall accuracy is defined as the 

average accuracy across all classes. 
 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1
4
�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)� 

 
A confusion matrix is defined as a two dimensional matrix[𝑀𝑀𝑟𝑟,𝑐𝑐], where the rows 𝑟𝑟 (𝑟𝑟 ∈

{𝑠𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠}) represent the ground truth class labels and the columns 𝑐𝑐 (𝑐𝑐 ∈
{𝑠𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠}) represent the predicted class labels. A value in row 𝑟𝑟 and column 𝑐𝑐 represents the 
number of data samples that have a ground truth class 𝑟𝑟 and were predicted as class 𝑐𝑐. 
 

𝑀𝑀𝑟𝑟,𝑐𝑐 = |{𝑖𝑖: 𝑦𝑦𝑖𝑖 = 𝑟𝑟, 𝑦𝑦�𝑖𝑖 = 𝑐𝑐}| 
 

Results and Discussion 
 
We have trained the eCNN model on a training set of 3505 samples and a validation set of 458 samples. The 
model was tested on a testing set of 954 samples. The training set includes 338 samples labeled as Sit, 521 
samples labeled as Stand, 1574 samples labeled as Walk, and 1072 samples labeled as Smell. The validation set 
includes 55 samples labeled as Sit, 65 samples labeled as Stand, 207 samples labeled as Walk, and 131 samples 
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labeled as Smell. The testing set includes 102 samples labeled as Sit, 149 samples labeled as Stand, 427 samples 
labeled as Walk, and 276 samples labeled as Smell. The experiments were run with 1 hyper-batch and 4 hyper-
batches over 40 hyper-epochs. The best overall accuracy on the validation set was used to select the best number 
of hyper-epochs and number of hyper-batches. Training was run on a Windows machine with 24.0 GB RAM 
and 2.3 GHz AMD Ryzen 5 processor. One round of training took approximately 7 hours. 

Table 1 shows the performance of the model over 40 hyper-epochs and 4 hyper-batches selected by 
validation. On the validation dataset, the model achieves an overall accuracy of 79.47%. It correctly predicts 
88.00% of samples labeled as Sit, 72.73% of samples labeled as Stand, 78.95% of samples labeled as Walk, and 
78.20% of samples labeled as Smell. On the testing dataset, the model achieves an overall accuracy of 79.02%. 
It correctly predicts 84.21% of samples labeled as Sit, 78.87% of samples labeled as Stand, 78.66% of samples 
labeled as Walk, and 74.33% of samples labeled as Smell. The performance of the eCNN model on the validation 
and testing sets is very similar, showing no obvious overfitting. The model achieves the highest accuracy for 
class Sit, but performance is relatively similar over all classes. 

The confusion matrix on the testing set is as follows: 
 

 
 
Figure 10. Confusion matrix on testing set. 
 
Table 1. Experimental results. 
 

 Training Validation Testing 
Number of Samples 3505 458 954 
Number of Samples: class Sit 338 55 102 
Number of Samples: class Stand 521 65 149 
Number of Samples: class Walk 1574 207 427 
Number of Samples: class Smell 1072 131 276 
Overall Accuracy 94.34% 79.47% 79.02% 
Accuracy of class Sit 99.11% 88.00% 84.21% 
Accuracy of class Stand 95.59% 72.73% 78.87% 
Accuracy of class Walk 96.19% 78.95% 78.66% 
Accuracy of class Smell 86.47% 78.20% 74.33% 
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Figure 11. Overall performance of model over different hyper-epochs: (11a) 1 batch used; (11b) 4 batches used. 
Blue: training; Orange: validation; Green: test 
 

To evaluate the effects of multiple hyper-epochs and hyper-batches on the performance of the model, 
we plot the overall accuracy over different numbers of hyper-epochs and hyper-batches in Figure 10. With 1 
batch, the training reaches optimal performance at around 20 hyper-epochs. With 4 batches, the training reaches 
optimal performance much earlier at around 5 hyper-epochs. In both tests, the model’s performance on valida-
tion and testing sets are very similar, suggesting no obvious overfitting. However, with 4 batches, there is a 
relatively large difference between the training performance and the validation performance. This is likely 
caused by the smaller number of data samples in each batch fed into the training algorithm. The performance 
of each class over different hyper-epochs is shown in Figure 11. Although each class has a different number of 
training samples, the model’s performance is consistent across all classes. 
 

 
 
Figure 12. Performance on each class over different hyper-epochs. (12a) Sit; (12b) Stand; (12c) Walk; (12d) 
Smell 
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Figure 13. 32 convolutional filters with size 7x7 learned by the eCNN model. 
 

Figure 12 shows the 32 convolution filters of size 7x7 that were learned by the model. They represent 
various color patterns. Many filters have a color difference along a diagonal, which suggests that the dog pays 
more attention and reacts to color differences in its field of view.  
 

 
Figure 14. Average weights on image (14a), audio (14b), and motion (14c) features in dense layer. 
 

To understand the role each sensing modality plays in predicting the dog’s actions, we first display the 
weights on the input nodes learned by the model which correspond to image, audio, and motion features re-
spectively. For each input node corresponding to image features, we average the magnitude of the weights of 
the dense layer nodes connected to that input node. The average weight is calculated for all input notes corre-
sponding to image features and is shown in Figure 13. Similarly, the average weights for audio and motion 
features are calculated and shown in Figure 13 as well. We observe that for the audio features, some low fre-
quency features are weighted more, which suggests that the dog likely reacts more to the low frequency com-
ponents in what it hears. 

Volume 12 Issue 4 (2023) 

ISSN: 2167-1907 www.JSR.org/hs 11



 
 
Figure 15. Overall performance of model using single-modal data. (15a): used only images; (15b): used only 
audio; (15c): used only motion 
 

In addition, we have trained the model separately using only image, only audio, and only motion in-
formation. 10 hyper-epochs and 4 hyper-batches are used in the tests, shown in Figure 14. The optimal perfor-
mance of the model trained with each type of single-modal input is shown in Table 2. The model achieves the 
highest overall accuracy when using only audio as input, suggesting that audio plays a significant role in the 
dog’s behavior. Training using only motion information has a much lower performance than the multi-modality 
input, which is likely due to inadequate background motion correction. 
 
Table 2. Optimal performance of model trained with only image, only audio, and only motion information. 
 

 Image only Audio only Motion only 
Overall Accu-
racy 

78.81% 86.74% 43.66% 

 

Conclusion 
 
In this work, we proposed a research framework to understand dog behavior. In contrast with most studies 
which collect data from a human perspective, we collected video and audio data from a dog’s egocentric view. 
To our knowledge, we are one of the first to incorporate audio data. Through machine learning, we learned the 
association between the dog’s reaction and the visual and audio stimuli perceived by the dog. We proposed an 
extended Convolutional Neural Network (eCNN) to utilize multi-modality features of images, audio, and mo-
tion information. The model achieved promising results with an overall prediction accuracy of 79.02%. We 
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observed that the dog reacts strongly to various color patterns and color contrasts in its field of view. It also 
reacts more to some low frequency components in what it hears. These findings can offer useful information 
when designing effective ways to train dogs for various services, such as companionship and rescue work, as 
well as offering valuable insights in understanding animal intelligence. 
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